ALMA MATER STUDIORUM - UNIVERSITA DI BOLOGNA

SCUOLA DI SCIENZE
Corso di Laurea Magistrale in Informatica

LARGE LANGUAGE MODELS
FOR
EDUCATION

Relatore: Presentata da:
Chiar.mo Prof. BIANCA

SAVERIO RAIMONDI
GIALLORENZO

Correlatore:
Chiar.mo Prof.
MAURIZIO
GABBRIELLI

Sessione 11
Anno Accademico 2022/2023

E, andandomene via, dovetti concludere meco stesso che
veramente di cotest’uomo ero piu sapiente 10: in questo senso,
che l'uno e altro di nov due poteva pur darsi non sapesse
niente né di buono né di bello; ma costui credeva sapere e non
sapeva, 10 invece, come non sapevo, neanche credevo sapere; e
mi parve imsomma che almeno per una piccola cosa 1o fossi piu
sapiente di lui, per questa che 1o, quel che non so,

neanche credo saperlo.

(Platone, Apologia di Socrate)

Abstract

This thesis explores the use of large language models (LLMs) in specialized
domains, with a particular focus on educational content found in LaTeX-
formatted textbooks. The introduction highlights the importance of fine-
tuning LLMs for domain-specific tasks and emphasizes the significance of
preprocessing data from specialized sources like textbooks.

One of the key objectives is to demonstrate how fine-tuned LLMs, tailored
to educational content, can effectively address the limitations of LLMs pre-
trained on general text, especially in responding to single-choice questions.
Additionally, the thesis examines the practical aspects of deploying LLMs,
comparing the resource consumption of large pretrained models to smaller
fine-tuned ones, offering insights into performance-efficiency trade-offs.

In summary, this thesis aims to contribute to the field of natural language
processing by exploring the adaptation of LLMs to educational content and
addressing their limitations. The research is structured into three chapters,
each focusing on distinct aspects, and concludes with reflections on future
directions in this evolving field.

Introduction

In the ever-evolving landscape of natural language processing, the quest to
enhance the capabilities of large language models (LLMs) has led to ground-
breaking advancements in various applications, from chatbots to text gen-
eration. One compelling avenue of research is the adaptation of LLMs to
specialized domains, such as educational content found in LaTeX-formatted
textbooks. This thesis endeavors to delve into this intriguing realm, shed-
ding light on the utilization of LaTeX-formatted textbook data for fine-tuning
LLMs. This research underscores the critical importance of domain-specific
data preprocessing when confronted with the intricacies of specialized con-
tent like textbooks, with their unique formatting and structures.

One of the primary objectives of this work is to showcase the adaptability of
fine-tuned LLMs, specifically tailored to the nuances of educational content.
This adaptation addresses a substantial limitation in the capabilities of LLMs
pretrained on general text, which often struggle to provide accurate responses
to single-choice questions. By fine-tuning LLMs with domain-specific data,
this research aims to demonstrate significant improvements in their ability
to comprehend and respond to such questions effectively.

Furthermore, this thesis delves into the practical considerations surrounding
the deployment of fine-tuned LLMs, with a focus on resource consumption.
It compares the resource-intensive nature of employing a large, pretrained
LLM versus the more efficient utilization of a fine-tuned, smaller LLM. This
exploration provides valuable insights into the trade-offs between model size
and computational cost, offering guidance for researchers and practitioners
seeking to strike a balance between performance and efficiency in specialized
NLP applications.

In summary, this thesis embarks on a multifaceted journey that encompasses
the fine-tuning of LLMs using LaTeX-formatted textbook data, the optimiza-
tion of their performance in addressing single-choice questions, and a critical
evaluation of resource consumption. Through these investigations, we aim
to contribute valuable knowledge to the field of natural language processing,
fostering a deeper understanding of how LLMs can be harnessed to excel in

the domain of educational content and beyond.

This thesis is structured into three distinct chapters, each addressing a crucial
aspect of the research work. The first chapter 1 introduces Large Language
Models (LLMs), elucidating their core concepts, utilization in various appli-
cations, and the process of fine-tuning to adapt them to specific tasks.
Moving forward, the second chapter 2 delves into the historical evolution and
existing literature on the application of LLMs in the domain of education.
This chapter provides valuable context for the subsequent experiments by
tracing the evolution of LLMs in educational contexts and highlighting rele-
vant prior work.

The third and pivotal chapter 3 details the fine-tuning experiment conducted
in this research. It encompasses the methodology, dataset, and results,
showcasing how fine-tuned LLMs enhance their performance in addressing
single-choice questions. Additionally, this chapter presents a rigorous cost-
consuming comparison, shedding light on the resource efficiency of smaller
fine-tuned LLMs compared to larger, pretrained counterparts.

This well-structured thesis aims to comprehensively explore the potential of
fine-tuned LLMs in educational content and contribute valuable insights to
both the NLP and education communities.

i

Contents

Introduction

1

Large Language Models

1.1 Generative AT

1.2 Language Modeling

1.3 Transformer

1.4 LLMs - Large Language Models
1.4.1 A short history of LLMs
1.4.2 Pre-Training,
1.4.3 Fine-Tuning
1.4.4 Utilization oo
1.4.5 Evaluation o

Literature review of LLMs in Education

2.1 Education

2.2 Education: From 1966 to Recent Years
221 ITS.

2.2.2 ChatGPT
2.3 How to fine-tune LLMs for Educational purposes

Fine-Tuning LLaMA 7B for precise quiz-question answers
3.1 Problem statement
3.2 Imference
3.2.1 Inference resource consumption
3.3 Fine-tuning Lo
3.3.1 Preprocessing L.
3.3.2 LoRA - Fine-tuning technique
3.3.3 Fine-tuning resource consumption
334 Results.o

Conclusions and Future Works

il

List of Figures

1.1

1.2

1.3

1.4

1.5

1.6

1.7

1.8

1.9

1.10
1.11
1.12
1.13
1.14
1.15
1.16
1.17
1.18
1.19
1.20
1.21
1.22
1.23
1.24
1.25
1.26
1.27
1.28
1.29
1.30

Relationship between AI, ML, Generative Al, and LLMs . . .
An example of Statistical Language Model
An example of Neural Language Model
RNN reference window
LSTM reference window
Transformer reference window
Transformer Architecture
Encoder: Input Embedding 000
Encoder: Positional Embedding
Encoder
Encoder: Multi Head Attention
Encoder: Example of Multi Head Attention
Encoder: Query, Key, Value
Encoder: Query, Key, Value - Score Matrix
Encoder: Multi Head Attention - Softmax
Encoder: Multi Head Attention - Matrix Multiplication
Encoder: Multi Head Attention - Linear Layer
Encoder: Feed Forward
Decoder
Decoder - Auto regressive
LLMs Corpora o i
Scaling Law
InstructGPT
LLMs over years
GPT series in terms of datasource size
GPT series in terms of number of parameters
LLMs data sources in pre-training
LLMs preprocessing e
LLMs mainstream architectures
RLHF algorithm

v

1.31 Two prompting strategies: In-Context Learning vs Chain-of-
Thought prompting

2.1 ITS . . .
2.2 Hybrid system: I'TS combined with LLM - Architecture
2.3 Hybrid system: I'TS combined with LLM - Example
2.4 Benefits and challenges of ChatGPT an integrated framework
2.5 InstructGPT (PPO-ptx) vs other models

3.1 RQ1: open-ended vs. single-choice question.
3.2 Example of single-choice question proposed to ChatGPT
3.3 lit-gpt inference resource consumption
3.4 lit-gpt - data format L
3.5 lit-gpt - Example of latex paragraph
3.6 lit-gpt - Example of preprocessed paragraph
3.7 lit-gpt - Example of preprocessed paragraph in lit-gpt format .
3.8 lit-gpt - Example of preprocessed paragraph in lit-gpt format
after splittingo
3.9 LLMs general objective function
3.10 LoRA general objective function
3.11 lit-gpt inference resource consumption
3.12 LLaMA-2 pre-training times

51

List of Tables

3.1 Percentage of correct answers - ML: Machine Learning, S: Se-
curity, PL: Programming Languages

3.2 Fine-tuning resource consumption
3.3 Fine-tuning - results

vi

Chapter 1

Large Language Models

In this chapter, the focus lies on Large Language Models (LLM), their history,
and the main techniques employed in present times. The first part will
cover Generative Al and Language Modeling, providing essential insights to
comprehend the nature of LLMs. Following that, the chapter will introduce
the aforementioned techniques.

1.1 Generative Al

ARTIFICAL INTELLIGENCE

MACHINE LEARNING

GENERATIVE Al

LARGE LANGUAGE MODELS

CONVERSATIONAL
AGENTS

CHATGPT

Figure 1.1: Relationship between Al, ML, Generative Al, and LLMs

Generative Al is a type of artificial intelligence that is capable of generating
new content or data that resembles existing data or follows a certain pattern.
It uses machine learning algorithms to learn from a dataset and then create

new content based on that learning. Figure 1.1 from [1] shows the relation-
ship between Artificial Intelligence, Machine Learning, Generative Al and
LLMs in terms of nested sets.

Generative Al can be used in a variety of applications, such as natural lan-
guage processing, image generation, and music composition. For example, a
generative language model could be trained on a large dataset of text and
then be used to generate new text that resembles the original dataset. Simi-
larly, a generative image model could be trained on a large dataset of images
and then be used to generate new images that resemble the original dataset.

1.2 Language Modeling

Human beings possess a significant ability to express and communicate through
language, which starts developing in early childhood and continues to evolve
throughout their lives. However, machines lack the innate capacity to under-
stand and communicate using human language, unless equipped with power-
ful Artificial Intelligence algorithms. This has been a long-standing research
challenge: enabling machines to read, write, and communicate like humans.
Language modeling (LM) is a major approach used to enhance the language
intelligence of machines. Generally, LM focuses on modeling the likelihood
of generating word sequences to predict the probabilities of future or missing
tokens. Over time, LM research has gone through four major development
stages:

1. Statistical Language Models (SLM): the fundamental concept of this
stage, also known as n-gram language models, involves constructing a
word prediction model using the Markov assumption. In other words,
it predicts the next word by considering only the most recent context.
In figure 1.2 from [2] an example of SLM.

o S = The boy went to the ___

0.8 -
- W, =argmaxy,(P(W | W .)

__06-
%28
=)
& 0.4-

0‘2 I l

0.0 - - - I s —

park store grocery beach restaurant ...
Next token [W]

Figure 1.2: An example of Statistical Language Model

2. Neural Language Models (NLM): during this stage, the probability
of word sequences is characterized using neural networks, particularly
recurrent neural networks (RNNs). These RNNs are utilized to model

the likelihood of different word sequences. In figure 1.3 from [3] an
example of NLM.

word (n-2) word (n-1) word (n)

.Hﬂ@

word (n-3) word (n-2) | |word (n-1)

Figure 1.3: An example of Neural Language Model

3. Pre-trained language models (PLM): in this stage, the approach was
introduced to capture context-aware word representations by initially
pre-training a bidirectional LSTM (biLSTM) network. Instead of learn-
ing fixed word representations, the biLSTM network is fine-tuned specif-
ically for downstream tasks to enhance its ability to understand con-

text. In next paragraph will be explained main concepts of these mod-
els.

4. Large language models (LLM): the term Large Language Models (LLM:s)
is used by the research community to refer to PLMs that are of sig-
nificant size in terms of parameters number inside the network. As
it will be illustrated in next sections, a remarkable example of LLMs
is ChatGPT [4], which leverages the advancements of the GPT series
for dialogue applications. ChatGPT showcases an impressive ability to
engage in amazing conversations with humans.

Each of these stages has received considerable attention in the literature, but
at the moment, LLMs have attracted the attention of a vast area of research
due to their capabilities in content generation. In this work, the attention
will be focused on LLMs only. Before introducing LLMs, it is necessary to
understand what Transformer architecture is and how it is used in LLMs. So
the next section introduces Transformer and how it relates to LLMs.

1.3 Transformer

In 2017, Vaswani et al. [5] presented the Transformer architecture, which
marked a breakthrough in natural language processing by effectively over-
coming the limitations associated with recurrent neural networks (RNNs).

| !
As aliens entered our planet and began tocolonize earth a certain group of extraterrestrials i
i i

Figure 1.4: RNN reference window

RNNs have a limited context window (as shown in Figure 1.4), which
limits their ability to retrieve words produced earlier in the sequence.

. !
As aliens entered our planet | and began to colonize earth a certain group of extraterrestrials et
H I

Figure 1.5: LSTM reference window

LSTMs have a larger reference window compared to RNN (Fig. 1.5).

h
As aliens entered our planet and began to colonize earth a certain group of extraterrestrials ...
h

Figure 1.6: Transformer reference window

Transformers, on the other hand, have an infinite reference window (Fig.
1.6). This allows them to take full advantage of the context while generating
text.

At its core, the Transformer uses a novel attention mechanism that allows
it to process input data in parallel, making it highly efficient for sequential
tasks. The architecture consists of an encoder and a decoder, each of which
consists of several layers. At a high level, the encoder maps an input se-
quence into an abstract continuous representation that holds all the learned
information of that input to the decoder. The decoder then takes these con-
tinuous representations and incrementally generates a single output, while
also feeding back to previous outputs.

The encoder processes the input sequence by applying self-attention mech-
anisms to capture dependencies between different words, regardless of their
position in the sequence. The self-attention mechanism computes weighted

representations of all words in the sequence, allowing the model to consider
the context of each word in relation to all other words. This is particularly
useful for understanding the nuanced relationships between words, even if
they are far apart in the sequence.

The breakthrough feature of the Transformer architecture, its attention mech-
anism, is a key element that has facilitated the development of LLMs. LLMs,
such as OpenAl’s GPT series, use the Transformer architecture to learn and
generate human-like text. By pre-training on massive amounts of text data,
these models learn complex linguistic patterns and structures. This pre-
trained model can then be fine-tuned for specific tasks such as language
translation, question answering and even creative writing.

The relationship between the Transformer architecture and LLMs lies in their
synergy. LLMs use the powerful attention mechanisms of the Transformer
to understand and generate coherent and contextually relevant text. The
model’s self-attention allows it to capture the nuances of language, such as
semantics, syntax and long-range dependencies, and to produce human-like
text that is contextually accurate. In addition, LLMs can be primed with
prompts to trigger specific types of responses, providing a remarkable degree
of control over the content generated.

The innovative attention mechanism of the Transformer architecture, com-
bined with the massive scale of training data and advances in optimisation
techniques, has propelled the development of LLMSs to the forefront of natural
language understanding and generation. These models have demonstrated
exceptional performance in a wide range of applications, from automated
translation to content creation, and have played a pivotal role in reshaping
how machines interact with and produce human language. The next subsec-
tion provides a better overview of the architecture.

Transformer Architecture

Output
Probabilities

N
(| Add & Norm

Feed
Forward

~\ | Add & Norm |<_:

e |
£OE RO Mult-Head
Feed Attention
Forward JED) Nx
 CE—
Nix Add & Norm
f—>| Add & Norm | Masked
Multi-Head Multi-Head
Attention Attention
At 4 A_t 2
o J _ —)
Positional D @ Positional
Encoding Encoding
Input Output
Embedding Embedding
Inputs Outputs

(shifted right)

Figure 1.7: Transformer Architecture

The transformer architecture, as shown in Figure 1.7, has a distinctive struc-
ture that includes stacked layers of self-attention and pointwise fully con-
nected layers in both its encoder and decoder components, shown on the
left and right sides of Figure 1.7, respectively. Within the encoder stack, a
crucial aspect is the presence of N = 6 identical layers. Each of these layers
consists of two sub-layers. The first sub-layer implements a multi-head self-
attention mechanism, while the second sub-layer uses a simple positionally
fully connected feed-forward network. Residual connections are integrated
around each of these sub-layers, followed by layer normalisation. Similarly,
the decoder stack, which mirrors the structure of the encoder, also consists

of N = 6 identical layers. In addition to the two sub-layers present in each
encoder layer, the decoder introduces a third sub-layer. This third sub-layer
performs multi-head attention on the output generated by the encoder stack.
As in the encoder, residual connections are included around each sub-layer,
followed by layer normalisation. A notable modification to the decoder’s
self-attention sub-layer is to prevent positions from attending to subsequent
positions, effectively creating a masking effect. This, combined with the prop-
erty of shifting output embeddings by one position, ensures that predictions
for position i rely solely on previously known outputs at positions preceding
i. This strategic design enhances the decoder’s ability to effectively handle
sequential information and produce coherent output sequences.

Encoder

The first step of the encoder is the Input Embedding.

Input
Embedding

Hi how are you
Figure 1.8: Encoder: Input Embedding

The input is passed through a word embedding layer, which acts as a kind
of reference table. This layer effectively captures a learned representation
factor for each individual word. Consequently, each word corresponds to a
vector of continuous values, as shown in Figure 1.8.

Positional Input
Embeddings

oeas B+ BH HH BH

Time Step

Figure 1.9: Encoder: Positional Embedding

The next stage is to inject positional data into the embeddings, as shown
in Figure 1.9. These positional embeddings are combined with the input
embeddings to form the positional input embeddings used in the subsequent
stages.

HHHH

,—>‘ Add & Norm '
i

Feed
Forward

~|_Add & Norm

S E—

Multi-Headed
Attention

T
HHABH

Figure 1.10: Encoder

The primary objective of the encoder is to transform the entire input
sequence into a continuous and abstract representation that captures the
knowledge acquired throughout the sequence. This component consists of
two sub-modules, as shown in Figure 1.10: first, the multi-head attention
mechanism is applied, followed by a fully connected network. In addition,
residual connections surround each of these two sub-modules, and then a layer
normalisation step, referred to as ”Add & Norm” in Figure 1.7, is applied.

e
HHHH

Hi how are you

Scale

'y

MatMul Figure 1.12: Encoder: Example of
) t Multi Head Attention

Linear Linear Linear

Figure 1.11: Encoder: Multi Head
Attention

Multi-head attention uses a specialised attention mechanism known as
self-attention, as shown in Figure 1.11. Self-Attention allows the model to
make associations between each individual word in the input and other words
in the same input sequence. For example, as shown in figure 1.12, the word
"you” can be associated with the words "how” and ”are”. This mechanism
makes it easier to capture natural language structures.

10

query key value

B%HH HBFH HHFH

Linear Linear \ Linear

HHHH

Figure 1.13: Encoder: Query, Key, Value

Self-attention is achieved by processing the input through three separate,
fully connected layers, generating the query, key and value vectors. These
terms come from the context of retrieval systems.

Hi how are you
ez Jrof e
BB
[
BEEn

Figure 1.14: Encoder: Query, Key, Value - Score Matrix

Scores

Matrix multiplication is performed on the queries and keys to generate a
score matrix, as shown in Figure 1.14 within the MatMul operation shown in
Figure 1.11. This score matrix plays a key role in determining the amount of
attention each word should be given to other words: higher scores correspond
to more attention. Subsequently, as shown in figure 1.11 under the label
”Scale”, these scores are scaled. This scaling step is essential to stabilise
the gradients, as direct multiplication of the values can lead to undesirable
exploding effects.

11

Hi how are you

[1 1
mmm
mEmmE
DEmo

Figure 1.15: Encoder: Multi Head Attention - Softmax

Then, as shown in Figure 1.15 in the context of the Softmax operation,
the scaled scores are subjected to a transformation. This transformation is
crucial in the context of the multi-head attention mechanism shown in Figure
1.11. It involves the application of the softmax function, which is used to
convert the scaled scores into attention weights. These attention weights
represent probabilities that range from 0 to 1. The softmax operation plays
a critical role in increasing the significance of higher scores while decreasing
the influence of lower scores. Consequently, this process helps the model to
achieve greater confidence in selecting which words to attend to during its
computation.

attention weights output

« HHHH - HHHH

Figure 1.16: Encoder: Multi Head Attention - Matrix Multiplication

In the context of multi-head attention within the encoder architecture,
as shown in Figure 1.11, the process involves taking the attention weights,
as shown in Figure 1.16, and using them to perform a matrix multiplication
operation on the value vector. This operation produces an output vector.
Importantly, the softmax scores associated with the attention weights play a
crucial role in this operation. In particular, higher softmax scores correspond
to words that the model considers more important, effectively preserving their
contribution in the output vector. Conversely, lower scores have the effect of

12

reducing the importance of less relevant words, essentially attenuating their

influence in the final output.

Linear

HHEH

Figure 1.17: Encoder: Multi Head Attention - Linear Layer

Then, as shown in Figure 1.11, the output vector from Figure 1.17 is fed
into a linear layer for further processing.

13

/[Add&Norm |
|

Feed
Forward

A

I
|
|
|
|
|
|
|

~ Add & Norm |
I

4

Multi-Headed
Attention

Input
Embedding

T

Inputs

Figure 1.18: Encoder: Feed Forward

Looking again at the encoder architecture, the next step after the multi-

head attention phase is a feed-forward operation (as shown in Fig. 1.18).
Prior to this feed forward step, the architecture incorporates a crucial ele-
ment known as a residual connection, whereby the output vector from the
multi-head attention mechanism is added to the original vector. This com-
bined output is then subjected to a layer normalisation process. The resulting
normalised residual output is then fed into a pointwise feed-forward network
for additional computation. The resulting output from this feed-forward
network is again combined with the input to the feed-forward network and
subjected to another round of normalisation.
The purpose of these residual connections is to facilitate efficient training
of the network by allowing gradients to propagate directly through the ar-
chitecture. Meanwhile, the layer normalisation steps serve to stabilise the
network, promoting consistent training performance over time. The point-
wise feed-forward layer plays a key role in further enhancing the attentional
output, potentially giving it a more expressive and informative representa-
tion.

14

Decoder

Probqbilities

Softﬁ’nax

T

Linear

T

_ Add & Norm [«

A _J
Feed
Forward

|

Add &Norm |~

Multi-Headed
Attention

F ¥ 1

it

Add & Norm [+~

Multi-Headed
Attention

Output |
Embedding

1

Outputs
(shifted right)

Figure 1.19: Decoder

The encoder’s representation helps the decoder to focus its attention on the
relevant input words during the decoding process. The primary function of
the decoder is to produce text sequences. As shown in Figure 1.19, the de-
coder consists of sub-layers analogous to those found in the encoder. Specif-

15

ically, it consists of two multi-headed attention layers and a point-wise feed-
forward layer. These sub-layers behave similarly to the layers in the encoder,
although each Multi-Headed Attention layer serves a different purpose. The
final Softmax layer is introduced to compute word probabilities.

Transformers

Decoder

OO O 0O

<start> | am

Figure 1.20: Decoder - Auto regressive

In the context of the decoder, a critical aspect to highlight is its autore-
gressive nature, as illustrated in Figure 1.20. This means that the decoder’s
operation relies on two key inputs: the sequence of previous outputs and
the encoder outputs, which encapsulate important attentional information
derived from the input data. It is worth noting that the decoder’s decoding
process continues until it produces an ’end’ token as an output, signalling
the completion of its task.

16

1.4 LLMs - Large Language Models

LLMs [6] are a type of generative Al model that uses deep learning tech-
niques to generate human-like text. There are significant distinctions be-
tween LLMs and smaller Pre-trained Language Models (PLMs). Firstly,
LLMs demonstrate surprising emergent abilities that were not observable in
previous smaller PLMs. These newfound abilities are crucial for enhancing
the performance of language models on complex tasks, resulting in unprece-
dented power and effectiveness for Al algorithms. Secondly, LLMs have the
potential to revolutionize the way humans develop and utilize Al algorithms.
Unlike small PLMs, LLMs are primarily accessed through a prompting in-
terface, such as the GPT-4 API [7]. Users need to comprehend how LLMs
function and structure their tasks in a manner that allows the LLMs to
comprehend and respond effectively. This shift in approach introduces new
possibilities for human-Al interactions.

Corpora Size Source Latest Update Time
BookCorpus [122] 5GB Books Dec-2015
Gutenberg [123] - Books Dec-2021
C4 [73] 800GB CommonCrawl Apr-2019
CC-Stories-R [124] 31GB CommonCrawl Sep-2019
CC-NEWS [27] 78GB CommonCrawl Feb-2019
REALNEWS [125] 120GB CommonCrawl Apr-2019
OpenWebText [126] 38GB ~ Reddit links Mar-2023
Pushift.io [127] 2TB Reddit links Mar-2023
Wikipedia [128] 21GB Wikipedia Mar-2023
BigQuery [129] - Codes Mar-2023
the Pile [130] 800GB Other Dec-2020
ROOTS [131] 1.6TB Other Jun-2022

Figure 1.21: LLMs Corpora

LLMs are pre-trained on massive amounts of text data, such as books,
articles, and websites, and use this data to learn the patterns and structures
of language. The term ”"massive amounts of text data” refers to hundreds of
billions of words. This is one of the main features that make LLMs different
from simple PLMs. To fulfill this requirement, various accessible training
datasets have been made available for research purposes. Figure 1.21 from
[6] provides a concise overview of several widely used corpora for LLM train-
ing.

The most well-known example of LLMs is the GPT (Generative Pre-trained

17

Transformer) series developed by OpenAl [8]. The GPT models use the
Transformer architecture and are trained on a large corpus of text data us-
ing unsupervised learning techniques. The GPT-3 model [9], for example,
has been trained on a dataset of over 570GB of text data and has approxi-
mately 175 billion parameters, making it one of the largest LLMs.

LLMs are capable of a wide range of language tasks, including language
translation, text summarization, question-answering, and language genera-
tion. They are often used in natural language processing (NLP) applications
to assist with tasks such as customer service chatbots, content creation, and
language translation.

N
L(N) = () , an ~0.076, N. ~ 8.8 x 10"
uo) = (

o) = (

@p
) , ap ~ 0.095,D. ~ 5.4 x 10"

QY B|D =2

ac
) . ac ~ 0.050,C. ~ 3.1 x 10°

Figure 1.22: Scaling Law

LLMs achieve significant improvements in model capacity through the
scaling of model size, data size, and total compute. Therefore, it becomes
essential to establish a quantitative method for assessing the impact of scal-
ing. In this context, the figure 1.22 from [10] represents a scaling law for
Transformer-based LLMs, where L(.) stay for cross entropy loss. The term
"scaling law” in the context of LLMs, refers to the observed relationship
between the performance and the size (scale) of the model. Scaling laws de-
scribe how various metrics, such as model capacity, computational require-
ments, and performance, change as the size of the LM increases. In figure
1.22 N stays for model size, D for dataset size and C for the amount of
training compute. The three laws were established through the process of
fitting model performance across a range of diverse data sizes (ranging from
22 million to 23 billion tokens), varying model sizes (from 768 million to 1.5
billion non-embedding parameters), and different levels of training compute.
These laws were derived based on certain assumptions, such as ensuring that
the analysis of one factor is not constrained by the simultaneous influence of
the other two factors. The research revealed a substantial interdependency
between model performance and these three influencing factors.

18

A recent problem about the use of LLMs is the alignment. Alignment tun-
ing is a crucial process for LLMs as they are trained on diverse data, which
can lead to the generation of toxic, biased, or harmful content. To ensure
LLMs adhere to human values, such as being helpful, honest, and benign, an
effective tuning approach is necessary.

Step1 Step 2 Step 3
Collect demonstration data, Collect comparison data, Optimize a policy against
and train a supervised policy. and train a reward model. the reward model using

reinforcement learning.

A promptis A prompt and
sampled from our 2 several model °

Explain the moon Explain the moon
prompt dataset. landing to a 6 year old outputs are landing to a 6 year old

sampled.
Exclain graviy Explan vor
A labeler
demonstrates the @ (] (0]
desired output e | e
. 2

behavior.

Some people went
to the moon...

Alabeler ranks

the outputs from @
best to worst.

This data is used

SFT NcH =
to fine-tune GPT-3 A 0-0-0-0
. N e . o o
with supervised \.\52{/
| ing.
earning z This data is used o
to trai . _90
EIEIE o train our A,
reward model. \}52(./
0-0-0-0

Figure 1.23: InstructGPT

InstructGPT [11] proposes a successful method that uses reinforcement
learning with human feedback (illustrated in figure 1.23). This approach in-
volves incorporating human input during training through carefully designed
labeling strategies. ChatGPT [4] employs a similar technique to Instruct-
GPT, demonstrating its capability to align with human values by producing
high-quality, harmless responses. For instance, it can refuse to answer insult-
ing questions, showcasing its strong alignment capacity.

Other critic aspect is that the computational resources required to train
and run these models are significant, making them inaccessible to many re-
searchers and organizations. In this thesis we aim to use pre-trained models
to avoid such costs and make inference over Education tasks, as explained in
Chapter 3.

Before discussing the use of LLMs in Education (main topic of Chapter 2), it
is necessary to understand basic knowledge about the history of LLMs and

19

about how these models can be pre-trained, fine-tuned, used and evaluated.
The following paragraphs explain the above mentioned topics.

1.4.1 A short history of LLMs

e G T5 G GShard Publicly Available
2019 — 2020 {_ 3 mT5 é"é PanGu-o '5.?' Ernie 3.0
2021 HUAWE!
Al21
14 PLUG Jurassic-1
GPT-3 @/ ~ . €2 labs
Codex @ Gy 3AAI CPM-2
T0 0 o0 —— {5 LaMDA

\ mspur Yuan 1.0

0 AlphaCode
WebGPT@ g 12
S \ @ Chinchilla
Ernie 3.0 Titan ¢fs InstructGPT @ zozz ' CodeGeeX
Sparro _—
Gophero CodeGen Guz Q) sparrow @
S

T S Flan-T »
GLaM ¢ MTENLG 5 e \ / G P (5 Flan-Ts wsrs| Vieuna

o~
Flan-PalLM
GPT-NeoX-20B @ 0 M - 9 &2 PanGu-x

HUAWEI

L
BLOOM O GLM , Tk-Instruct Aj2 \ /)\‘ uminous S Bard

Anthropic [A\| 4 perCLOVA

wto () o NLLB
AlexaTM O Cohere / \ 00 LLaMA
BLOOMZ 0 : 11-12 .
WeLM ij 2023 —— 1!4 —_
Galatica (X) /\ |
OPT-IML (X) ChatGPT @ GPT-4 @

Figure 1.24: LLMs over years

At the end of 2022, OpenAl [8] releases ChatGPT [4], an incredibly powerful
conversational LLM. This allowed the world to focus its research on LLMs.
In this section, we will briefly discuss the GPT series to illustrate how LLMs
take place in years. Figure 1.24 from [6] shows the most important LLMs
actually released.

Transformer’s advent [5] led to GPT-1 and GPT-2, foundational for subse-
quent GPT-3 and GPT-4. Figures 1.25 and 1.26 from [12] shows differences

between models of GPT series.

20

GPT-1 - 4.8GB (unfiltered) data

GPT-2 - 40GB human-filtered data

Similar model
architectures

GPT-3 <+— 570GB data filtered from 45TB raw data

ChatGPT/GPT-4 «— Human demonstrations and annotations

Data size |
Data quality T

Figure 1.25: GPT series in terms of datasource size

Parameters 117 million 1.5 billion 175 billion

Figure 1.26: GPT series in terms of number of parameters

e GPT-1, released in 2018, utilized a generative, decoder-only Trans-
former architecture. It combined unsupervised pre-training and super-
vised fine-tuning to predict the next word, setting the core for GPT-
series models.

e GPT-2, introduced in 2019, scaled to 1.5B parameters and used a large
webpage dataset, WebText [13], for unsupervised language modeling. Tt
explored task-solving via probabilistic multi-task approaches, showing
the potential of unsupervised models for various tasks.

e GPT-3 (2020) scaled to 175B parameters, introduced in-context learn-
ing (ICL) for few-shot or zero-shot tasks. It excelled in NLP tasks and
demonstrated exceptional reasoning and domain adaptation capabili-
ties, surpassing basic scaling laws. GPT-3 marks a significant milestone
in the evolution from PLMs to LLMs, validating the immense model
capacity achieved through neural network scaling.

e OpenAl released ChatGPT [4] in 2022, a conversation model trained
similarly to InstructGPT [11], optimized for dialogue with human-

21

generated conversations. ChatGPT excelled in reasoning, context track-
ing, and aligning with human values. Later, plugin support extended

its capabilities.

o GPT-4, released in 2023, handled multimodal inputs, outperforming
GPT-3.5 in complex tasks. It addressed safety concerns through iter-
ative alignment and intervention strategies. Despite progress, limita-
tions persist, including hallucinations and risky responses.

1.4.2 Pre-Training

TS5 (11B) mT5 (13B) LLaMA (65B)
3%
2% 5%
5%
100% 100% 87%
GLaM (1200B) PaLM (540B) LaMDA (137B)

22%

30%

5%

13%
14% 31%

38%
48%

50% 50%

‘Webpages

Conversation Data

GPT-3 (175B) MT-NLG (530B) Gopher (280B)
0,
16% e 3%
26% 4% 37%
6% 62% 60%
84%
Galactica (120B) GPT-NeoX (20B) CodeGen (16B)
0,
¥ < 20%
7% 30% ?
39% 6%
38% %
10% e
86% 15% 25%
Books & News Scientific Data Code

Figure 1.27: LLMs data sources in pre-training

Chinchilla (70B)
4%

0,
40% 56%

AlphaCode (41B)

100%

Pre-training is crucial for LLM abilities, involving acquiring language un-
derstanding and generation skills through large-scale corpora. The quality
and scale of the pre-training data significantly impact LLM capabilities. Ef-
fective pre-training requires well-designed model architectures, acceleration
methods, and optimization techniques. Data collection and processing play
a vital role, and LLMs require high-quality data. Pre-training corpus in-
cludes general data like webpages and books, enhancing language modeling
and generalization. Specialized data, such as multilingual or scientific data,
equips LLMs with task-specific capabilities. Figure 1.27 from [6] illustrates
the sources of pre-training data for various LLMs.

22

Raw Corpus Quality Filtering De-duplication Privacy Reduction Tokenization Ly

pre-train!
+ Language Filtering * Sentence-level * Detect Personality * Reuse Existing = ==
| sy . * Metric Filtering * Document-level Identlﬁal?le Lokenizen - -
s I Information (PII) ¢ SentencePiece —
7 * Statistic Filtering * Set-level =
. + Remove PII « Byte-level BPE -
« Keyword Filtering
SF B 0 ey P y R b s Fommm e s L
i Alice is writing a paper about i E Alice is writing a paper about | E Replace ('Alice') is 1 E Encode ("[Somebody] is 1 E 32, 145, 66,79, 12, 56, ... |
1 LLMs. #8& Alice is writing | 1 LLMs. Atteeis-writing-apaper ‘ 1 writing a paper about LLMs. ‘ 1 writing a paper about LLMs. ')E] b
i a paper about LLMs. { | abeutTEMs: i | i |] |

Figure 1.28: LLMs preprocessing

Data preprocessing is a crucial step in constructing the pre-training cor-
pus for LLMs. After gathering a large amount of text data, it is essential to
remove noisy, redundant, irrelevant, and potentially toxic data, as these fac-
tors can significantly impact the capacity and performance of LLMs. Figure
1.28 from [6] presents a typical preprocessing pipeline for LLMs, comprising
several phases:

e Quality Filtering: this phase involves filtering out low-quality or unreli-
able data to ensure that the pre-training corpus consists of high-quality
text. Various criteria, such as language accuracy and relevance, are em-
ployed to retain valuable data.

e De-duplication: redundant data can introduce biases and unnecessarily
increase the corpus size. De-duplication ensures that duplicate content
is removed, resulting in a cleaner and more concise dataset.

e Privacy Redaction: to protect sensitive information, privacy redaction
techniques are applied. This ensures that personally identifiable infor-
mation and confidential data are masked or removed, complying with
privacy regulations.

e Tokenization: tokenization is the process of breaking down text into
smaller units called tokens. This step is essential for language modeling,
as it enables the model to understand and generate text effectively.
Tokens can be words, subwords, or characters, depending on the chosen
tokenization strategy.

By following this preprocessing pipeline, the resulting pre-training corpus
is more refined, representative, and better suited for training powerful and
capable LLMs. It ensures that the model focuses on learning meaningful
patterns and structures from the data, leading to improved language under-
standing and generation skills.

23

Model Category Size
GPT3 [55] Causal decoder 175B
PanGU- « [75] Causal decoder 207B
OPT [81] Causal decoder 175B
PalLM [56] Causal decoder 540B
BLOOM [69] Causal decoder 176B
MT-NLG [97] Causal decoder 530B
Gopher [59] Causal decoder 280B
Chinchilla [34] Causal decoder 70B
Galactica [35] Causal decoder 120B
LaMDA [63] Causal decoder 137B
Jurassic-1 [91] Causal decoder 178B
LLaMA [57] Causal decoder 65B
GLM-130B [83] Prefix decoder 130B
T5 [73] Encoder-decoder 11B

Figure 1.29: LLMs mainstream architectures

The mainstream architectures of LLMs are represented in figure 1.29 from
[6]. The Transformer architecture [5] is the backbone of most LLMs due to
its parallelizability and capacity. Existing LLMs can be categorized into
three main types: encoder-decoder, causal decoder, and prefix decoder. The
encoder-decoder architecture utilizes stacked multi-head self-attention lay-
ers for encoding and decoding. Causal decoders use unidirectional attention
masks, like the GPT-series models, while prefix decoders modify the mask-
ing mechanism to enable bidirectional attention over prefix tokens. Notable
LLMs based on these architectures include T5 [14], BART [15], GPT-series
[8].

24

1.4.3 Fine-Tuning

Fine-tuning is a machine learning technique used to improve the performance
of a pre-trained model by training it further on a specific task or domain. In
fine-tuning, a pre-trained model, which has already learned a set of features
from a large dataset, is further trained on a smaller dataset that is specific
to the task at hand.

The idea behind fine-tuning is to leverage the pre-trained model’s learned
features and knowledge to accelerate training on the new dataset and im-
prove its performance on the target task. During fine-tuning, the model’s
weights are updated through backpropagation to minimize the error between
its predictions and the ground truth labels in the target dataset.
Fine-tuning can be done using various techniques such as freezing certain
layers of the pre-trained model, adjusting the learning rate, and choosing an
appropriate optimizer. The success of fine-tuning depends on factors such as
the size and quality of the target dataset, the similarity of the pre-trained
model’s features to the target task, and the fine-tuning hyperparameters.
Moreover fine-tuning requires training on a moderate number of instances.
It can be seen as a supervised training process, and its optimization differs
from pre-training in several aspects. One major difference lies in the training
objective, where instruction tuning utilizes a sequence-to-sequence loss. The
optimization configuration is also adjusted for instruction tuning, including
the use of smaller batch sizes and learning rates to ensure stability and effi-
cient convergence. In addition to the optimization configurations, a crucial
aspect requires consideration during instruction tuning: balancing the data
distribution. Instruction tuning involves fine-tuning on a mixture of different
tasks. Therefore, it is essential to balance the proportion of data from each
task during the fine-tuning process. This ensures that the model is not bi-
ased towards any particular task and can effectively generalize across various
tasks.

By addressing this aspect during instruction tuning, the resulting fine-tuned
model can effectively leverage the knowledge gained during pre-training and
specialize in performing well on the specific tasks at hand. This makes in-
struction tuning a powerful and efficient approach for tailoring language mod-
els to various downstream tasks in natural language processing.

As said before, there still remains the alignment problem. Nowadays, to
avoid this problem, there exists a technique called reinforcement learning
from human feedback (RLHF) [11]. This approach has been used to fine-
tune LLMs such as ChatGPT [4].

25

——————————————————————————————————— : Supervised Fine-tuning

/ Frompts Training with demonstration data
Human ,_,. |
Annotator \ ‘f]!
Demonstrations —> Pre-trained LM
Demonstration Data
Reward Model Training
_______________________ :’._'__f_f_'__'__'__T_T_T_'__'__'__'__T,' ToommEEmEmT ' TTTTTTTTTTT,
v %) '
Prompts ——> LM Outputs Reward '
O 5 Model ' >
/]A Pre-trained LM
—_—

Ranking Human Feedback Training with feedback data
_______________________________________ . RL Fine-tuning
! 1
: ponTnnnnnEn e nnnnnnnnnn et I :

: 5 Reward ' A
v Prompts : Model) €
v Pl] l — Aligned LM
; ; AR - —> T
LM Outputs 5 - e - : -
Reward Training with RL algorithm (PPO)

Figure 1.30: RLHF algorithm

The RLHF system comprises three main components: a pre-trained lan-
guage model (LM) for alignment, a reward model (RM) learning from hu-
man feedback, and an reinforcement learning (RL) algorithm for language
model training. The pre-trained LM is initialized with existing parameters.
The RM provides guidance signals reflecting human preferences, usually as a
scalar value. A specific RL algorithm, such as Proximal Policy Optimization
(PPO), tunes the pre-trained LM with the reward model signal. Figure 1.30
from [6] represents the RLHF algorithm.

26

Nx

1.4.4 Utilization

In-Context Learning Chain-of-Thought Prompting

Answer the following mathematical reasoning questions: Answer the following mathematical reasoning questions:

If you have 12 cfmdies and you give 4 candies to your friend, Q: Ifarectangle has a length of 6 cm and a width of 3 cm,
how many candies do you have left? what is the perimeter of the rectangle?

0
A: Theansweris8 o] DS e R e T TR e e s e
o

If a rectangle has a length of 6 cm and a width of 3 cm,
what is the perimeter of the rectangle? | [S

The answer is 18 cm. The answer is 18 cm.

A
Q: Sam has 12 marbles. He gives 1/4 of them to his sister. Q: Sam has 12 marbles. He gives 1/4 of them to his sister.
How many marbles does Sam have left? How many marbles does Sam have left?

A: He gives (1 /4) x 12 = 3 marbles.
A: The answer is 9. D a— LLM — So Sam is left with 12 — 3 = 9 marbles.

The answer is 9.

: Task description : Demonstration : Chain-of-Thought : Query

Figure 1.31: Two prompting strategies: In-Context Learning vs Chain-of-
Thought prompting

After pre-training or adaptation tuning, one of the major approaches to utiliz-
ing Language Models (LLMs) is by designing suitable prompting strategies
for solving various tasks. A common method for prompting is in-context
learning (ICL). In this approach, the task description and/or task examples
are formulated as natural language text prompts. Additionally, chain-of-
thought prompting can be employed to enhance in-context learning by in-
volving a series of intermediate reasoning steps into the prompts. The main
differences between these two approaches in represented in figure 1.31 from
[6].

In in-context learning (ICL), a formatted natural language prompt is used,
which typically consists of the task description and/or a few task examples
as demonstrations. Firstly, a task description is taken as input, and then
a few examples are selected from the task dataset to serve as demonstra-
tions. Finally, the test instance is appended to the demonstrations as input
to the LLMs, which then generate the output based on the given prompt.
By utilizing task demonstrations, LLMs can recognize and perform a new
task without requiring explicit gradient updates. Formally, given the task
description I, demonstrations Dy as tuples x; y;, and a new input query xy,1,
the prediction of the output yy,; generated from LLMs can be formulated
as follows:

LLM(Ia f(xla?h)v "'>f(xk7yk)7 f(xk’—i-la—)) — Yk+1

27

In this formulation, the actual answer yy 1 is left as a blank to be predicted
by the LLM.

ICL shares a close connection with instruction tuning, as both approaches
utilize natural language to format tasks or instances. However, instruction
tuning requires fine-tuning LLMs for adaptation to a specific task, while ICL
only prompts LLMs for utilization without requiring explicit fine-tuning.
Overall, the use of in-context learning and chain-of-thought prompting pro-
vides a powerful way to leverage the capabilities of LLMs for various tasks,
by allowing the model to understand and reason based on natural language
instructions and demonstrations. These techniques enable LLMs to per-
form tasks without the need for explicit updates during inference, making
them valuable tools for a wide range of applications. Properly designing the
prompts and demonstrations is essential for achieving effective and accurate
performance with these approaches.

1.4.5 Evaluation

The effectiveness and superiority of LLMs have been examined through em-
pirical evaluation and analysis using various tasks and benchmarks. Three
basic evaluation tasks for language generation and understanding are com-
monly used:

e Language Modeling: This task involves evaluating the model’s ability
to predict the next word in a sentence or sequence. Datasets such
as PennTreebank [16], WikiText-103 [17], and the Pile [18] are used
for evaluation, and the metric of perplexity is commonly employed to
assess the model’s performance under the zero-shot setting.

e Conditional Text Generation: This task focuses on generating texts
based on specific conditions or demands, such as machine translation,
text summarization, and question answering. Automatic metrics like
Accuracy, BLEU [19], and ROUGE [20] are used to measure the quality
of the generated text.

e Code Synthesis: For assessing the code synthesis abilities of LLMs,
benchmarks like APPS [21], HumanEval [22], and MBPP [23] are used.
These benchmarks include diverse programming problems with text
specifications and test cases for correctness checking.

In addition to these basic evaluation tasks, several comprehensive bench-
marks have been developed to evaluate LLMs from a more general perspec-
tive. Notable examples include:

28

e MMLU [24]: A versatile benchmark for large-scale evaluation of multi-
task knowledge understanding, covering a wide range of knowledge do-
mains from mathematics and computer science to humanities and social
sciences.

e BIG-bench [25]: A collaborative benchmark comprising 204 tasks that
cover a broad range of topics, intended to probe existing LLMs from
various aspects.

e HELM [26]: A comprehensive benchmark that implements a core set
of 16 scenarios and 7 categories of metrics.

LLMs have been pre-trained on large-scale corpora, enabling them to capture
rich knowledge from the pre-training data. As a result, they are employed
as domain experts or specialists for specific areas, and studies have explored
their adaptation capacity on domain-specific tasks. In-context learning is
used to evaluate the performance of LLMs in domain-specific datasets.
Education is an important application domain where LLMs show promise.
Studies have demonstrated that LLMs can achieve student-level performance
on standardized tests in subjects like mathematics, physics, and computer
science, both in multiple-choice and free-response problems. LLMs have been
used as writing or reading assistants for educational purposes, generating log-
ically consistent answers and improving student performance. However, the
increasing popularity of LLMs has raised concerns about their rational use,
as there are potential risks of cheating on homework and other ethical con-
siderations in education.

In conclusion, the evaluation of LLMs spans various tasks, benchmarks, and
application domains, showcasing their versatility and potential impact on
different fields. While they exhibit impressive capabilities, it is crucial to
carefully assess their usage in educational settings and consider ethical im-
plications for responsible implementation.

29

Chapter 2

Literature review of LLMs in
Education

LLMs can be valuable tools in the field of Education as they provide advanced
language processing capabilities and can assist in various educational tasks.
Here are some ways LLMs can be used in Education:

Content Generation: LLMs can generate educational content such as
lesson plans, quizzes, worksheets, and study materials [27]. By provid-
ing prompts or guidelines, LLMs can produce customized content to
meet specific teaching objectives and student needs.

Automated Feedback and Assessment: LLMs can analyze and evaluate
student work, providing automated feedback on assignments, essays, or
answers to questions. This can save teachers time and provide students
with instant feedback to guide their learning process.

Natural Language Processing: LLMs can help in developing natural
language interfaces for educational software and platforms. This allows
students to interact with educational tools using their natural language,
making learning more engaging and accessible.

Adaptive Learning: LLMs can analyze student data and adapt instruc-
tional materials to meet individual learning needs. By tracking student
progress and understanding their strengths and weaknesses, LLMs can
provide personalized learning experiences [28].

Language Learning and Translation: LLMs can assist in language learn-
ing by providing language practice exercises, correcting grammar and

30

vocabulary errors, and simulating conversations. They can also fa-
cilitate translation tasks, allowing students to understand educational
materials in their native language.

e Question Answering and Research: LLMs can help teachers and stu-
dents find answers to questions, conduct research, and explore educa-
tional resources. By understanding natural language queries, LLMs can
retrieve relevant information from various sources and provide accurate
and timely responses.

It’s important to note that while LLMs can offer significant support in the

field of Education, they should not replace the role of teachers. Educators
play a vital role in guiding students, fostering critical thinking, and creating
meaningful learning experiences. LLMs can serve as powerful tools to en-
hance teaching and learning, but human expertise and guidance are crucial
for effective education.
In this chapter, we embark on a comprehensive literature review that delves
into the integration of LLMs within the realm of education. The review is
structured to provide a thorough understanding of LLMs’ significance in ed-
ucational contexts, tracing their evolution from historical milestones to the
present day (Section 2.2). We explore the role of LLMs in education, span-
ning the trajectory from their inception in 1966 to the present, with a specific
focus on their application in two critical areas: Intelligent Tutoring Systems
(ITS) (Section 2.2.1) and the remarkable impact of ChatGPT (Section 2.2.2).
Furthermore, we delve into the methodologies employed to fine-tune LLMs
for educational purposes (Section 2.3), offering insights into the strategies
that enable these models to cater effectively to educational needs.

31

2.1 Education

Education is the science or study of teaching and instructional design. It
encompasses the principles, methods, and techniques used in education to
facilitate effective learning. The field of Education focuses on how to best
convey knowledge, skills, and attitudes to learners in various educational set-
tings.

Education involves the development of instructional strategies, curriculum
planning, and the design of learning materials and activities. It explores
different teaching methods, approaches, and tools that can be employed to
optimize the learning process and promote student engagement and achieve-
ment.

The goals of Education are to understand how people learn, identify effective
teaching methods, and create supportive learning environments.

Education is not limited to a specific educational level or subject area. It
encompasses both formal education (schools, universities) and informal learn-
ing contexts. It can apply to various subjects, such as mathematics, science,
languages, social sciences, and more.

Overall, Education is concerned with understanding and improving the pro-
cess of teaching and learning, with the aim of enabling learners to acquire
knowledge and skills effectively and meaningfully.

32

2.2 Education: From 1966 to Recent Years

The evolution of chatbots as Education tools began in 1966 with the creation
of ELIZA [29], marking the inception of a journey that led to significant
technological advancements. These advancements have notably expanded
the potential of chatbots as pedagogical tools to support language learning
among students.

Over the years, as chatbots have evolved since the days of ELIZA, Intelligent
Tutoring Systems (ITS) have emerged as pivotal components, influencing the
progress of language education and catalyzing the development of sophisti-
cated language model-powered chatbots like ChatGPT.

The rise of Intelligent Tutoring Systems (ITS) has played a pivotal role in
shaping the landscape of language education. These systems aimed to pro-
vide personalized and adaptive instruction, mimicking the role of human
tutors. Early instances like the PLATO system in the 1970s [30] laid the
groundwork for leveraging technology to enhance educational experiences.
The integration of Large Language Model (LLM) technology, exemplified by
ChatGPT, represents a natural evolution of Intelligent Tutoring Systems.
ChatGPT’s capabilities, including contextual memory, understanding user
corrections, and filtering inappropriate content, align seamlessly with the
objectives of intelligent tutoring. These features empower ChatGPT to en-
gage in contextually relevant interactions with students, akin to personalized
human tutoring.

Moreover, ChatGPT’s proficiency in sustaining extended goal-oriented con-
versations positions it as a valuable asset in education. In the domain of
language learning, ChatGPT can serve as a versatile partner, enabling stu-
dents to practice conversational skills, access instructional materials, and
aiding teachers in lesson planning. Its adaptability caters to diverse learning
styles, promising a personalized educational experience.

The trajectory from early I'TS implementations to the advanced capabilities
of LLM-powered chatbots like ChatGPT underscores the continual effort to
leverage technology in education. By incorporating advanced natural lan-
guage understanding and generation, these chatbots bridge the gap between
traditional teaching methods and modern digital tools. As education evolves,
integrating LLM-powered chatbots into the learning process holds the poten-
tial for more effective and engaging educational experiences worldwide.
Jeon [31] categorized three distinct types of chatbots beneficial for language
learning:

e General-purpose chatbots: Engage in simple daily conversations using
Q&A dialogue.

33

e Specific-purpose chatbots: Designed for language learning, often devel-
oped by commercial entities.

e Customized chatbots: Tailored by researchers or educators for specific
contexts, built using visual chatbot development platforms.

Recent research [32] consistently validates these chatbot types’ effectiveness
in language learning. However, limitations exist. Chatbots can play roles be-
yond mere conversation practice, such as aiding thought organization and fur-
nishing instructional materials, yet these possibilities remain underexplored.
Previous chatbots struggled with multi-turn open-ended conversations due
to rule-based designs and limited data sources, resulting in contextually in-
appropriate responses.

The introduction of ChatGPT addresses these limitations. Powered by LLM
technology, ChatGPT can generate more human-like responses. LLM inte-
gration equips ChatGPT with three vital capabilities [33]:

e Recall of previous user statements.
e Adaptation to user corrections.
e Rejection of inappropriate requests.

These advancements enable ChatGPT to simulate authentic human conver-
sations and respond effectively to diverse user inputs. It excels in sustain-
ing extensive conversational exchanges on specific subjects, suggesting LLM-
powered chatbots” potential to serve varied educational functions [34].

In conclusion, integrating LLM-powered chatbots into education, especially
language learning, has gained traction. The journey from ELIZA to ad-
vanced ChatGPT showcases technology’s role in enriching language edu-
cation through versatile and improved chatbot interactions. This study’s
primary focus is on ChatGPT due to its prominence in educational liter-
ature [4] and its potential to redefine interactions between humans (teach-
ers/professors) and tools.

The subsequent paragraphs will delve into I'TS and ChatGPT.

34

2.2.1 ITS

LEaning la—— | Knowledge

recommends i
2 Educati
> uc;a ;on
Hedie Use FCA to
Learner —| generate knowledge
structure
B Learner
profiles
Course
g -Contents
\ . . .
Manipulate -Objectives
R - .
Teacher course details -Exercises
-Tests

Figure 2.1: ITS

An intelligent tutoring system (ITS) is a computerized platform designed to
offer immediate and tailored instruction or feedback to learners, often with-
out requiring human intervention. In figure 2.1 from [35] there is a small
representation of ITS. I'TSs utilize various computing technologies to facili-
tate meaningful and efficient learning experiences. These systems find appli-
cation in formal education as well as professional environments, showcasing
their capabilities and limitations. Intelligent tutoring is closely intertwined
with cognitive learning theories and design principles, and ongoing research
aims to enhance the efficacy of ITS. By aiming to replicate the advantages
of personalized, one-on-one tutoring, I'TSs address scenarios where students
might otherwise receive one-to-many instruction from a single teacher (e.g.,
classroom lectures) or lack access to a teacher altogether (e.g., online home-
work). A primary objective of ITS development is to provide all students
with access to high-quality education.

35

MWP solution example:
{problem statement +
source code solution)

MWP to be solved
{only problem statement)

Figure 2.2: Hybrid system: ITS combined with LLM - Architecture

=T - Y T

B = =

13

[- T N S SR

Figure 2.3: Hybrid system: ITS combined with LLM - Example

(+ Language Source code Compiler

maodel solution

Problem solution
in the internal
representation
used by the ITS

""" A book has 3 chapters. The first chapter is 91 pages long

the second chapter is 23 pages long and the third chapter is

25 pages long. How many more pages does the first chapter have
than the second chapter? """

def sol():
context = dict ()
context ['number of chapters'] = 3
context ['number of pages first chapter'] = 91
context ['number of pages sencond chapter'] = 23
context ['number of pages third chapter'] = 25
context ['pages more first chapter'] = {(

context ['number of pages first chapter']

— context ['number of pages second chapter']

)

return context['pages more first chapter']

""" An industrial machine worked for 5 minutes. It can make 4 shirts a minute.

g e

How many shirts did the machine make:
def sol():

(a) Prompt example and problem to be solved

context = dict ()
context ['number of minutes'] = 5
context['shirts per minute'] = 4

context ['number of shirts'] = (
context ['number of minutes’]
* context['shirts per minute']
)
return context['number of shirts']

(b) Generated code

36

An interesting study [36] for this work proposed an interaction between
ITS and LLMs. In figures 2.2 and 2.3 a representation of this study. The
researchers introduce an innovative approach to solve mathematical word
problems (MWPs) and convert them into the internal representation of In-
telligent Tutoring Systems (ITS). The method leverages LLM to generate
Python source code capable of solving the problems. A notable advantage
of this method is its ability to automatically assign meaningful names to the
quantities within the MWP, facilitating conversational interactions between
students and the system.

Beyond automated problem-solving and quantity naming, this approach holds
potential for automatically translating problem statements into an I'TS’s in-
ternal knowledge representation schema. Such functionality empowers learn-
ers to contribute new MWPs to the ITS, enabling practice with a wide range
of mathematical problems. Similarly, tutors can efficiently introduce new
MWPs at scale. Experimental results reveal the approach’s strong perfor-
mance, particularly with Salesforce’s CodeGen model [37], achieving 39.1%
accuracy for unknown solutions and 69.1% for known solutions.

This work presents a promising avenue for improving math education within
online learning environments. By automating problem-solving, providing
automatic quantity naming, and enabling translation into I'TS schemas, the
approach enhances math skill development and facilitates personalized and
scalable learning. The effectiveness of the method hinges on code generation
model performance, suggesting potential improvements with more advanced
models in the future.

A trade-off exists between model size, generated samples, and performance,
with larger models generally performing better. Integrating this system into
an ITS remains experimental, where the achieved 69% accuracy might not
be sufficient for a final product, but can still simplify MWP encoding and
debugging while under human supervision.

However, this approach has limitations. The generation of plain Python
code restricts solutions to arithmetic problems, excluding those requiring al-
gebraic equation systems. Additionally, a single solution graph per problem
may not cover all possible resolutions. Future work aims to address these is-
sues, explore diverse source code snippets for multiple resolution paths, and
integrate the method into an ITS for seamless inclusion of new problems.
Evaluation will focus on students’ Quality of Experience and the acceptance
of the tutoring system.

37

2.2.2 ChatGPT

ChatGPT [4] is an Al language model developed by OpenAl [8]. It is based
on the GPT (Generative Pre-trained Transformer) architecture, specifically
GPT-3.5. It is designed to understand and generate human-like text re-
sponses based on the given input or prompts.

Benefits of ChatGPT Challenges Posed by ChatGPT
1. Threat to ethical and equiry considerations (P13

1.Facilitates adaptive learming (P11, P2 & P3) &P14)
2.Provides individualised feedback (P4 & P.5) Higher 2 Hard to maintain academic integrity (P15 & P.16)
3.Provides research, writing, & data analytics to] Educational |e|3 Potential bias and falsified information in

support (P6,P7 & P8) o . Environment information processing (P17)
4. Provides automated administrative support (P.9) 4 Difficult to evaluate graduate skill sets (P.18)
5. Help developing innovative assessment activities ’% 5 Difficult to assess students’ learming outcomes

; g
(P10, P.11 & P12) Canstretiviam P19
Learning
Contextual & Critical thinking

T & problem
learning Active Real world solving
learmng Socal expenence
inferactions

Figure 2.4: Benefits and challenges of ChatGPT an integrated framework

ChatGPT presents both opportunities and challenges in education [38].
In figure 2.4 from [28] there is a small representation of both opportunities
and challenges. The "educator’s dilemma” arises from the debate between
banning or promoting the use of such technologies. However, with proper
prompt engineering expertise, ChatGPT can generate high-quality output
tailored to specific tasks or goals.
In higher education, ChatGPT can serve as a valuable tool for personalized
learning [1]. It can support lecturers in various classroom tasks, create cus-
tom exercises and quizzes, offer feedback, and generate educational materials
that align with a student’s learning style and progress. Additionally, it can
assist in developing lecture ideas, drafting seminar plans and module descrip-
tions, and crafting announcement texts. Moreover, ChatGPT can be utilized
to assess students’ prior knowledge using Al.
A research study [33] examines ChatGPT’s educational potential and teach-
ers’ evolving roles in response to its implementation. Through chatbot logs
and interviews, a symbiotic relationship between teachers and Al emerges.
The study reveals that as technology becomes versatile, educators may as-
sume more critical roles to effectively integrate Al, fostering student bene-
fits. The study addresses limitations of prior chatbots by introducing LLM-
powered ChatGPT, capable of human-like conversations and diverse peda-
gogical roles. Teacher-Al collaboration is supported, debunking concerns of

38

dependency. ChatGPT’s adaptability demands teachers’ expanded pedagog-
ical decisions, evident in identified roles: resource orchestration, fostering
student investigation, and promoting ethical Al use. This study enriches our
understanding of AI’s integration in education and underscores the impor-
tance of teacher-student interactions.

Other works in this direction [39] see ChatGPT as a tool that provide ”Per-
sonalized tutoring”, leveraging this framework to offer tailored instruction to
students [40]. This innovative technology enables students to receive timely
responses to their queries without waiting for a tutor or teacher, saving them
significant time. Accessible around the clock, ChatGPT accommodates stu-
dents’ schedules, simplifying study time integration. Evidence shows person-
alized tutoring’s academic benefits. Bloom’s 1984 study revealed superior
performance for students with individualized instruction, highlighting Al-
powered chatbots’ role, offering instant feedback and guidance, central to
personalized learning [41] [40].

While the application of ChatGPT in education holds promise, it is impor-
tant to consider ethical implications, potential biases, and the need for human
oversight. Striking a balance between utilizing the capabilities of ChatGPT
and maintaining the role of human educators is essential to ensure effective
and responsible integration of Al technologies in education.

ChatGPT faces the hurdle of Al feedback acceptance over human instruc-
tors, conflicting with constructivist learning’s interactive and collaborative
nature. To instill trust, universities should combine ChatGPT and human
instructors for precise, credible feedback, curbing misinformation [28].
Having said that, the question is whether tools like ChatGPT can be used as
they are to create teaching materials, or whether they need to be fine-tuned
using some specific data from a particular argument. This is the aim of this
study research: try to fine-tune LLMs to obtain better performance helping
professors in their work and students during learning phases.

39

2.3 How to fine-tune LLMs for Educational
purposes

In the dynamic realm of natural language processing and artificial intelli-
gence, language models have emerged as powerful tools for understanding
and generating human-like text. Among these models, GPT-3 (Generative
Pre-trained Transformer 3) stands out as one of the largest and most sophis-
ticated language models, boasting billions of parameters and the ability to
generate coherent and contextually relevant text.

The challenge of aligning language models with human intent forms the fo-
cal point of this study. Using a fine-tuning approach can refine and en-
hance LLM’s performance [11]. Integrating human-guided refinements into
the model’s training process aims to bridge the gap between raw generative
capacity and nuanced user intent, elevating the practicality and reliability
of LLM across diverse tasks. Through careful analysis of labeler-written
prompts, user submissions, and human feedback, insights are gained into
how the process of fine-tuning contributes to aligning language models with
user expectations. Additionally, light is shed on the potential benefits of this
approach, including enhanced truthfulness, reduced toxicity, and improved
performance on relevant benchmarks. Ultimately, this investigation serves as
a stepping stone towards a more user-centric and intention-aligned approach
to language model development. By harnessing the power of human feed-
back, the study strives to unlock the full potential of LLMs, enabling them
to not only understand and generate text proficiently but also to serve as
effective tools for communication, learning, and problem-solving in a manner
that resonates with the diverse needs of human users. The method of [11],
called InstructGPT, includes some steps that follow the footsteps of [42] [43]
in stylistic continuation and summarization domains:

1. Collect Demonstration Data and Train Supervised Policy: Trained hu-
man labelers demonstrate the desired behavior on the input prompt
distribution. A pretrained model is fine-tuned using supervised learn-
ing based on this demonstration data.

2. Collect Comparison Data and Train Reward Model: A dataset of out-
put comparisons is assembled, where labelers express their preferences
for given inputs. A reward model is then trained to predict human-
preferred outputs.

3. Optimize Policy with PPO using Reward Model: The reward model’s
output serves as a scalar reward. The supervised policy is fine-tuned

40

Prevalence

0.75 4

0.50

0.25

using the Proximal Policy Optimization (PPO) algorithm to optimize
this reward.

Steps 2 and 3 can be repeated iteratively. This cyclic process enhances the
alignment of the language model with human intent.

: . - . - Uses language appropriate
Attempts correct instruction Follows explicit constraints Hallucinations for customer assistant
| 0.5
|
| } |
44 0.754
| 0 0.4+
0.3
0.50 -
0.2+ { 0.2 {
0.254
0.1 ‘
0- 0 0+
GPT GPT SFT PPO PPO-ptx GPT GPT SFT PPO PPO-pix GPT GPT SFT PPO PPO-pix GPT GPT g SFT PPO PPO-pix

(prompted)

(prompted) (prompted) (prompted)

Figure 2.5: InstructGPT (PPO-ptx) vs other models

As results of this technique, in figure 2.5 is illustrated the outcome of

human evaluations conducted on diverse models, utilizing the API prompt
distribution. Evaluation criteria were based on the frequency of model out-
puts being preferred over the 175B supervised fine-tuning (SFT) model’s
outputs. Notably, InstructGPT models (PPO-ptx), along with a pretraining
mix-excluded variant (PPO), exhibit significant performance enhancements
in contrast to GPT-3 baselines (GPT, GPT prompted). Specifically, the
outputs of the 1.3B PPO-ptx model are consistently favored over the 175B
GPT-3 model’s outputs.
This paper provides a robust depiction of result variability. The insights
conveyed by figure 2.5 underscore the effectiveness of InstructGPT models
in terms of user preference and alignment with human intent, signifying a
notable stride in the field.

41

Chapter 3

Fine-Tuning LLaMA 7B for
precise quiz-question answers

LLMs like GPT-3 have demonstrated remarkable abilities in understanding
and generating human-like text. When faced with single-choice questions
regarding university courses, LLMs utilize their extensive training on diverse
text sources to generate responses. In this context, this work shows that
LLMs achieve an accuracy of 68%, which means that out of a given set of
single-choice questions, created by university professors, the LLM answers ap-
proximately 68% of them correctly. This level of accuracy suggests a notable
capability to comprehend and reason through the question, as well as the
ability to generate a relevant answer that aligns with the provided options.
It is important to note that while a 68% accuracy indicates a significant level
of accuracy, there is still room for improvement. As LLMs continue to evolve
and be fine-tuned, their accuracy rates are likely to increase, enhancing their
performance in single-choice question scenarios. Nonetheless, achieving a
68% accuracy already underscores the impressive potential of LLMs to pro-
cess and respond to such questions, showcasing their contribution to natural
language understanding and communication.

The main purpose of this chapter is to focus on experiments of how LLMs
can generate answers to single-choice questions, and to illustrate how these
models can be prompted and fine-tuned, showing how results can change.
With this in mind, this chapter has been divided into 3 sections: problem
statement, inference and fine-tuning.

Before going through results of inference this chapter introduce a better
overview of the problem statement.

42

3.1 Problem statement

LLMs have revolutionized the field of natural language processing by demon-
strating remarkable proficiency in generating text sequences. However, their
performance varies significantly depending on the nature of the questions
they are posed.

n What is the difference between type coercion and type casting? n What is the difference between type coercion and type casting?
a. Type coercion automatically arranges the representation of values in memory, type
casting arranges value representation following the user's instructions.
b. Type coercion temporarily converts a value into one of another type, type casting

Type coercion and type casting are two related but distinct concepts in programming, permanently converts the value into the given type.
particularly in languages with data type systems. They both involve converting data from c. Type coercion implicitly converts value types, type casting is an explicit instruction for
one type to another, but they are used in different contexts and have different implications: types conversion.
d. Type coercion transform values into the types defined by the user, type casting transforms
1. Type Coercion: the values into types defined by external modules.

* Implicit Conversion: Type coercion is the automatic and implicit conversion of one data
type to another by the programming language itself during an operation.

2. Type Casting:

& ‘ The correct answer is: d
* Explicit Conversion: Type casting is the manual and explicit conversion of data from one
type to another by the programmer. It requires a specific syntax or function call to

perform the conversion.

Figure 3.1: RQ1: open-ended vs. single-choice question

In particular, LLMs excel at answering open-ended questions, often pro-
ducing responses that are coherent and informative. Yet, when confronted
with the rigidity of single or multiple-choice questions commonly found in
university courses and quizzes, their efficiency diminishes (see Fig. 3.1). This
discrepancy raises a pressing problem: how can we harness the full potential
of LLMs, especially in the context of quiz questions? This research delves
into this challenge by examining various versions of LLMs, ranging from 7
billion to 70 billion parameters, under the framework of LLaMA2. Moreover,
it endeavors to fine-tune the smaller model to attain the same level of ac-
curacy as their larger counterparts, shedding light on the crucial aspect of
cost efficiency in terms of resource consumption in the realm of Al-driven
question answering.

In this work the attention is posed on three different research questions:

e RQ1: how to harness the full potential of LLMs, not only in the context
of open-ended questions but also in the context of quiz questions?

e RQ2: Do smaller fine-tuned LLMs provide better results with regards
to bigger only pre-trained LLMs?

e RQ3: If smaller LLMs produce better results, are they less resource
consuming?

43

3.2 Inference

LLMs, including ChatGPT [4] and LlaMA2-chatbot [44], have been har-
nessed to perform inference on a diverse range of topics, such as Machine
Learning, Programming Languages and Security. In a comprehensive eval-
uation involving 60 single-choice questions from each domain, these advanced
language models have demonstrated an impressive level of accuracy by achiev-
ing a remarkable 68% correctness in their answers. This achievement under-
scores the models’ remarkable capacity to comprehend and reason through
a wide array of complex questions, accurately identifying the correct choices
among a set of options.

n What is the main difference between dynamic and static typing?
a. In static typing operation invocation is statically determined, while in dynamic typing
operation invocation works using dynamic dispatch.
b. In static typing, code is statically linked and can only access the static memory in the
stack, while in dynamic typing programs can access also dynamic memory in the heap.
c. In static typing, the value of variables can only assume values that are statically
determined, while in dynamic typing variables can assume any value defined dynamically at
runtime.
d. In static typing, type checking happens before program execution and in dynamic typing
it happens while the program executes.

d. In static typing, type checking happens before program execution, and in dynamic typing,

it happens while the program executes.

The main difference between static and dynamic typing lies in when type checking is
performed. In static typing, type checking is done before the program is executed, typically
during the compilation phase. This means that the types of variables and expressions are
determined and verified at compile-time, and any type-related errors are caught before the

program runs.

In dynamic typing, type checking is done while the program is executing. Types of variables
and expressions are determined and verified at runtime as the program is actually running.
This allows for greater flexibility but can also lead to runtime type errors if the program tries

to perform operations on incompatible types.

Option aisincorrect because dynamic dispatch is a concept related to polymorphism and
method invocation, not necessarily tied to dynamic typing. Option b is incorrect because the
distinction between static and dynamic typing is not about memory access but rather about
when type checking occurs. Option c is incorrect because it doesn't accurately capture the

difference between static and dynamic typing.

Figure 3.2: Example of single-choice question proposed to ChatGPT

44

In figure 3.2 a representation of a single-choice question proposed to Chat-
GPT.
By effectively leveraging their extensive training data and understanding of
context, these LLMs have proven their ability to provide informed responses
across multiple domains. This outcome reflects the potential of LLMs to serve
as versatile tools for knowledge inference, offering valuable insights and infor-
mation to users across a spectrum of subjects, including machine learning,
programming languages, and security. As ongoing advancements continue
to refine these models, it is foreseeable that their accuracy rates will fur-
ther improve, reinforcing their utility as reliable sources of information and
expertise.

Domains
ML S PL Mean
ChatGPT 17/25 = 68% | 8/10 = 80% | 16/25 = 64% | 41/60 = 68%
LLaMA2 70B | 14/25 =56% | 8/10 = 80% | 15/25 = 60% 37/60 = 62%
LLaMA2 13B | 14/25 = 56% 7/10 = 70% 13/25 = 52% 34/60 = 56%
LLaMA2 7B 10/25 = 40% 5/10 = 50% 13/25 = 52% 28/60 = 47%

Table 3.1: Percentage of correct answers - ML: Machine Learning, S: Security, PL:
Programming Languages

In table 3.1 there are the results of the inference of these two different

LLMs (ChatGPT and LLaMA2 chatbot) used to answer to 60 questions for
3 domains: Machine Learning (25 questions), Security (10 questions) and
Programming Languages (25 questions).
Focusing on three different domains provides a well-rounded and comprehen-
sive assessment of the capabilities and performance of LLMs like ChatGPT
and llama2-chatbot. The choice to span these diverse areas reflects a strategic
approach to evaluating the models’ versatility, adaptability, and knowledge
representation across different subject matters. The principal motivations
are resumed into the following listing.

e Representation of Expertise: These domains encompass a wide spec-
trum of topics that are highly relevant in today’s technology-driven
world. By assessing the models’ accuracy in each domain, we gain in-
sights into how well they can capture and reproduce expert-level knowl-
edge across various disciplines.

e Real-world Applicability: Machine learning, Programming Languages
and Security are crucial fields with practical applications across indus-
tries. Analyzing the models’ performance in these domains helps us

45

understand their potential utility in addressing real-world challenges
and assisting users with complex problem-solving.

e Cognitive Flexibility: Testing LLMs across diverse domains evaluates
their cognitive flexibility and adaptability. It showcases their ability to
navigate and comprehend different terminologies, concepts, and con-
texts, making them more versatile tools for a range of users with dis-
tinct needs.

e Knowledge Generalization: Focusing on three distinct domains enables
us to assess how well the models can generalize knowledge from their
training data to new and unseen questions. This provides insights into
their capacity to infer information and make educated guesses even
when confronted with unfamiliar scenarios.

e Limitations and Insights: Evaluating LLMs in multiple domains helps
us identify potential limitations and areas for improvement. It sheds
light on the types of questions and contexts where the models may
struggle, guiding further research and development efforts.

In essence, the decision to focus on these three different domains allows
for a more comprehensive evaluation of LLMs’ capabilities, showcasing their
potential as versatile and knowledgeable Al assistants across a wide array of
subjects.

3.2.1 Inference resource consumption

Testing the inference capabilities of various Large Language Models (LLMs)
provides valuable insights into their performance and suitability for different
applications. Due to the size of LLMs used, tests were made using different
interfaces and frameworks:

e ChatGPT was evaluated through the official web interface [4].

e LLaMA 7B was tested using the lit-gpt framework [45].

e LLaMA 13B was assessed through the llama2.ai web interface [44].
e LLaMA 70B was also evaluated via the llama2.ai web interface.

Each of these tests aimed to gauge the LLMs’ ability to comprehend and
generate human-like text. The choice of interface and framework depended
on the specific model’s availability and hardware constraints. Overall, these
assessments help users determine the most suitable LLM and interface for

46

their specific needs, whether it’s for conversational Al, content generation,
or advanced natural language understanding tasks.

Therefore, a particular interest was posed over LLaMA 7B because it is the
only LLM (of those chosen) that allows to be used by a relatively small size
GPU.

Settings Inference Memory
Default (bfloat16-mixed) N/A
--precision "bf16-true" 13.82 GB
--quantize "bnb.nf4" 4.66 GB
--quantize "bnb.nf4-dq" 4.34 GB
--precision "bf16-true" --quantize "bnb.nf4" 4.66 GB

--precision "bf16-true" --quantize "bnb.nf4-dq" 4.34 GB

Figure 3.3: lit-gpt inference resource consumption

In terms of resource consumption, lit-gpt provides a table (Fig. 3.3)
showing the hardware requirements for LLaMA 7B inference. The values
refer to LLaMA 7B model inference using a GPU with ~24GB of memory
(NVIDIA RTX 3090), the same used for the experiments in this work. The
first column represents the settings to be used when executing the inference
command (or the arguments passed to the inference Python program). In
this particular case, it is possible to pass two arguments:

e precision: an argument that allows the model weights to be automat-
ically converted to a lower precision (e.g. 16 instead of 32) to use less
memory.

e quantize: an argument that allows the weights to be represented as
fixed point numbers with a limited number of decimals (e.g. 4-bit or
8-bit).

First row represents the inference over the LLaMA 7B model as it is, without
setting precision or quantization arguments. In this work the value was tested
and is similar to the one of the second row: ~14GB.

47

3.3 Fine-tuning

This section deals with the fine-tuning results and into the three key research
questions aimed at optimizing the utilization of LLMs, particularly within
the realm of educational content derived from textbook:

e RQ1 - Harnessing the full potential of LLMs: A fine-tuning approach
is used to address the first research question. Fine-tuning LLMs on
educational content sourced from textbook allowed to maximize their
potential not only for open-ended questions but also for quiz-style ques-
tions. By tailoring the model’s knowledge and understanding to the
specific domain of the textbook, the aim is to enhance its performance
in generating contextually relevant and accurate responses to a wide
range of educational queries.

e RQ2 - Smaller vs. Bigger LLMs: The findings of this work affirmed the
second research question. Smaller fine-tuned LLM consistently outper-
formed larger, pre-trained LLM when it came to generating responses
aligned with the textbook content. This highlights the value of domain-
specific fine-tuning, where a smaller model, specifically adapted to the
educational context, exhibited superior performance compared to its
larger, more generalized counterpart.

e RQ3 - Resource Efficiency of Smaller LLMs: The results of this study
also confirmed the third research question. Smaller fine-tuned LLM
not only delivered better results but was also notably less resource-
consuming. This efficiency makes it an attractive choice for educational
applications, especially in scenarios where computational resources are
limited or where faster response times are imperative. Consequently,
the research underscores the potential of smaller, domain-specific LLM
as a cost-effective and efficient solution for educational content gener-
ation and understanding tasks.

Following paragraphs illustrate all steps involved in the fine-tuning process,
from the data preprocessing to the results, including some explanation of
fine-tuning techniques like Lora [46] and Adapters [47].

48

3.3.1 Preprocessing

Data preprocessing is a critical and foundational step in fine-tuning large
language models (LLMs) for natural language understanding and generation
tasks. The process involves a series of operations aimed at preparing the
raw input data to be compatible with the LLM architecture, enhancing its
quality, and optimizing its utility for the specific task at hand. Common pre-
processing tasks include cleaning and filtering out irrelevant or noisy data,
handling special tokens, and applying appropriate text normalization tech-
niques like lowercasing can significantly improve model performance.

In this work, data include textbook paragraph from a university course of
Programming Languages. This choice was taken considering the inference
questions about this field.

The data is provided in LaTeX form, so there is a need to prepare and
structure textual information for fine-tuning LLMs. Data preprocessing, in
this context, involves parsing the LaTeX-formatted documents to extract
meaningful text, handling LaTeX-specific syntax, and converting them into
tokenized sequences for the LLM. This process preserves the integrity of
scientific content while enabling the LLM to process and understand the
textual information effectively. Furthermore, it underscores the significance
of domain-specific data preprocessing when dealing with specialized content
like textbooks.

"instruction": "Write a limerick about a
pelican.”,
Ilinputll . nn
. 1
"output": "There once was a pelican so fine,

\nHis beak was as colorful as
sunshine, \nHe would fish all day,\nIn
a very unique way,\nThis pelican was
truly divine!\n\n\n"

"instruction": "Identify the odd one out from
the group.",

"input": "Carrot, Apple, Banana, Grape",

"output": "Carrot\n\n"

Figure 3.4: lit-gpt - data format
As said in previous sections, the framework used to fine-tune LLM is lit-

49

gpt [45]. To be used for fine-tuning, this framework requires data in a specific
format (Fig. 3.4). They require to fill in the instruction field with a specific
requirement to be used by the model to generate the output field. The input
field can be left unfilled. The idea of this work is to leverage the fine-tuning
phase to make the model learn new notions from the textbook.

\section{Data Types}

\label{sec8.1}

Data types are present in programming languages for at least three different
reasons:

\begin{enumerate}

\item At the design level, as support for the conceptual organisation;

\item At the program level, as support for correctness;

\item At the translation level, as support for the implementation.
\end{enumerate}

Before entering into a detailed discussion of these aspects, which we will do in
the coming sections, we give a definition which, as is often the case with
programming languages, is not formally precise but suffices to explain the
phenomena which we intend studying.

Figure 3.5: lit-gpt - Example of latex paragraph

###Data Types

Data types are present in programming languages for at least three different
reasons:

1. At the design level, as support for the conceptual organisation;

2. At the program level, as support for correctness;

3. At the translation level, as support for the implementation.

Before entering into a detailed discussion of these aspects, which we will do in
the coming sections, we give a definition which, as is often the case with
programming languages, is not formally precise but suffices to explain the
phenomena which we intend studying.

Figure 3.6: lit-gpt - Example of preprocessed paragraph

Starting from textbook data, paragraphs are provided in latex form (Fig.
3.5). From this type of informations data are preprocessed removing latex
command, i.e. \some_text. Paragraph titles are marked using # symbol, like
in markdown format to be identifiable. Fig. 3.6 represents an example of
preprocessed data.

50

"instruction": "Explain Data Types",

ni
r

"input":
"output": "Data types are present in programming languages for at least three different reasons ...

Figure 3.7: lit-gpt - Example of preprocessed paragraph in lit-gpt format

Next phase includes filling in the instruction, input and output fields.
Those boxes are filled in with the following values (Fig. 3.7):

e instruction: this field is a composition of the string ”Explain ” plus the
title of the paragraph.

e input: this field has been left unfilled.

e output: this field has been filled with the paragraph text.

"instruction": "Explain Data Types - Part 1",
llinputll: IIII’
"output": "Data types are present in programming languages for at least three different reasons ...

"instruction": "Explain Data Types - Part 2",
llinputll: IIII'
"“"output": "Before entering into a detailed discussion of these aspects, which we will do in the ... "

Figure 3.8: lit-gpt - Example of preprocessed paragraph in lit-gpt format
after splitting

An important step in the preprocessing phase is to set a limit on the token
sequence length of the output field. Limiting this length can help to reduce
the amount of memory used during fine tuning, thus avoiding errors such as
OOM (Out Of Memory). In this work, this limit has been set to a maximum
of 1000 tokens for each pattern. Paragraphs exceeding this limit are split
into different samples by adding the string ” - Part k£” after the paragraph
title (Fig. 3.8).

The last step of the preprocessing is the tokenisation. This part has been
left to the lit-gpt framework, which includes a script that does this.

o1

3.3.2 LoRA - Fine-tuning technique

In the realm of natural language processing, a significant paradigm involves
the initial pre-training of models on vast, general-domain datasets, followed
by their adaptation to specific tasks or domains. However, as we continue
to scale up model sizes, the conventional approach of full fine-tuning, which
entails retraining all model parameters, becomes increasingly impractical.
To illustrate this, consider GPT-3 with a staggering 175 billion parameters
- deploying individual instances of fine-tuned models, each with an equiva-
lent parameter count, incurs prohibitively high costs. In this direction, in
literature, were proposed different efficient techniques such as LoRA [46] and
LLaMA-Adapter [47]. In this work it’s used the LoRA technique, therefore
the following paragraph provides a brief overview of such technique.

LoRA - Low-Rank Adaptation

LoRA operates by preserving the pre-trained model’s weights while introduc-
ing trainable rank decomposition matrices into each layer of the Transformer
architecture. This ingenious approach substantially reduces the number of
trainable parameters for downstream tasks. When compared to fine-tuning
GPT-3 175B with the Adam optimizer, LoRA manages to achieve a remark-
able 10,000-fold reduction in trainable parameters and a 3-fold decrease in
GPU memory requirements. This superior performance is achieved despite
having fewer trainable parameters, a higher training throughput, and, no-
tably, no additional inference latency, unlike adapter-based approaches.

ly|

max Z Zlog (Po(yt|z,y<t))

(z,y)eZ t=1
Figure 3.9: LLMs general objective function

Let’s imagine we have a pre-trained autoregressive language model, de-
noted as Py (y|z) and characterized by the parameter set ®. To illustrate, this
model could be a versatile multi-task learner like GPT, which is based on the
Transformer architecture. Now, let’s consider the scenario where we want to
adapt this pre-trained model for specific text generation tasks (e.g. summa-
rization, machine reading comprehension or converting natural language to
SQL). Each of these tasks is defined by a training dataset containing pairs of
context and target sequences: Z = {(z;,v;) }i=1,.~n, where both x; and y; are
sequences composed of individual tokens. To give examples, in NL2SQL, z;

52

represents a natural language query, and y; corresponds to the SQL command
it should generate; in the case of summarization, x; contains the content of
an article, and y; represents its summary.

In the process of full fine-tuning, the model starts with its pre-trained weights
denoted as ®y. Subsequently, it undergoes iterative updates, progressing
from @y to o+ AP, as it continuously follows the gradient to maximize the
objective function (Fig. 3.9) of conditional language modeling.

ly|

max Z Zlog (P(I)()—|—A<I>(8)(yt|$ay<f))

(zy)ez t=1
Figure 3.10: LoRA general objective function

A significant limitation of the conventional full fine-tuning process is that
it necessitates the acquisition of a distinct parameter set A® for each indi-
vidual downstream task, and the dimension of A® (JA®|) is equivalent to
that of the pre-trained model |®|. Consequently, when dealing with sizable
pre-trained models like GPT-3, which boasts approximately 175 billion pa-
rameters (|®y| ~ 175Billion), the prospect of storing and deploying numerous
independent fine-tuned models becomes not only challenging but potentially
infeasible.

The authors propose a new method, wherein the task-specific parameter up-
date AP, denoted as AP(O), is represented using a significantly smaller set
of parameters O, with |©| substantially smaller than |®y|. This transforma-
tion effectively frames the process of finding A® as an optimization task over
the compact parameter set ©, offering a practical and efficient solution to
the challenge posed by large-scale pre-trained models during fine-tuning.
LoRA introduces a method utilizing a low-rank representation to encode
A®, offering the dual advantages of computational efficiency and minimal
memory usage. When applied to a pre-trained model like GPT-3 175B, this
approach can result in the number of trainable parameters, denoted as |O)|,
being reduced to a mere 0.01% of |®y.

33

3.3.3 Fine-tuning resource consumption

As said in the above section, fine-tuning technique can be expensive in terms
of resource consumption. This paragraph illustrate the costs implicated in
this phase that comprehend two different aspects:

e Memory space: the GB used in VRAM
e Time: the time of execution

As yet mentioned, this work made use of a ~24GB GPU to fine-tune the
smaller model of those involved in the inference phase: LLaMA 7B. This
due to memory constraints. This learning step make use of a relative small
quantity of data: 101 samples in training set and 4 samples in validation
set. The test set was not created because the model was tested, as for
inference, over the single-choice questions. Data, after preprocessing, occupy
only 188KB.

Settings Training Memory Training Time Loss
Default (bfloat16-mixed) OutOfMemoryError ~ NJ/A N/A
--precision "bf16-true" 20.60 GB 876.30s 0.8696
--quantize "bnb.nf4" 19.62 GB 1320.63s 1.0178
--quantize "bnb.nf4-dq" 19.32 GB 1359.10s 1.0132
--precision "bf16-true" --quantize "bnb.nf4" 13.44 GB 1089.79s 1.0130
--precision "bf16-true" --quantize "bnb.nf4-dqg" 13.15 GB 1135.86s 1.0124

Figure 3.11: lit-gpt inference resource consumption

The framework used for fine-tuning is the same of that used for inference:
lit-gpt [45]. As for inference the authors provide a little overview of resources
consumption (Fig. 3.11).

o4

Learning Rate | Batch Size | Micro Batch Size | Max Iters | Memory (GB) | Time (s)
0.001 16 2 2000 10.95 1188.53
0.001 32 2 1000 17.75 D72.75
0.001 32 4 500 17.75 500.00
0.001 32 4 1000 17.75 997.30
0.001 64 4 2000 17.77 1907.33
0.0001 16 4 2000 17.77 2095.63
0.0001 32 2 500 17.75 304.67
0.0001 32 4 2000 17.76 1941.85
0.0001 64 4 1000 17.76 949.20
0.0001 64 4 2000 17.77 1906.97
0.0001 128 2 2000 17.77 1107.62
0.0001 128 4 1000 17.77 951.99

Table 3.2: Fine-tuning resource consumption

In this work the only setting used is the last one: precision of 16 and dou-
ble quantization of 4. Table 3.2 reports the memory and time consumption
of the best models. These are the results of a fine-tuning involving a number
of trainable parameters equals to 4,194,304 over all 7B parameters.

Pre-training and Fine-tuning Times of LLaMA2: A Comparison

Time
(GPU hours)
7B 184320
Liamaz 1B 368640
34B 1038336
70B 1720320
Total 3311616

Figure 3.12: LLaMA-2 pre-training times

The pre-training times for different configurations of the Llama2 model [48]
vary significantly (Fig. 3.12). All pre-training was done with an A100-
80GB GPU. For the Llama2 7B model, the pre-training time is approxi-
mately 184,320 hours, reflecting the extensive computational resources re-
quired to train a model of this scale. In comparison, the Llama2 13B model
demands even more computational power, with a pre-training time of 368,640
hours, indicating its larger architecture and increased complexity. Finally,

95

the Llama2 70B model is the most resource-intensive, with an astonishing
pre-training time of 1,720,320 hours, highlighting the enormous investment in
time and hardware required to develop such a massive language model. These
variations in pre-training times underscore the trade-off between model size
and the computational resources necessary for training, with larger models
offering potential improvements in language understanding and generation
at the cost of increased training times.

The Llama2 7B model offers an efficient fine-tuning process with textbook
data. When fine-tuned, it exhibits a mean time consumption of just 5-30
minutes. This striking contrast highlights the advantage of using the Llama2
7B model when considering both pre-training and fine-tuning phases, as it
is significantly less time-consuming compared to its larger counterparts, the
Llama2 13B and 70B models. Despite its smaller architecture, Llama2 7B
still manages to deliver strong language capabilities while making more effi-
cient use of resources in real-world applications.

Importantly, the comparative results of inference after fine-tuning suggest
that the Llama2 7B model, when fine-tuned, outperforms both the Llama2
13B and 70B models when used in their pre-trained states (see Sec. 3.3.4
vs. Sec. 3.2). This outcome underscores the significance of the fine-tuning
process, demonstrating that the Llama2 7B model’s efficiency in balancing
pre-training and fine-tuning leads to superior performance when compared to
its larger counterparts, the Llama2 13B and 70B models, which rely solely on
their pre-trained capabilities. Thus, in terms of both computational efficiency
and practical effectiveness, the Llama2 7B model emerges as a compelling
choice.

56

3.3.4 Results

The results of fine-tuning LLaMA2 7B have yielded impressive and promis-
ing outcomes. This advanced language model, after undergoing fine-tuning,
exhibits a remarkable ability to understand and generate human-like text in
a in the domain and application of Programming Languages. The fine-tuning
process has further refined its ability to comprehend nuanced context, adapt
to specific tasks, and generate contextually relevant and contextually accu-
rate responses, marking a significant step forward in the capabilities of Al
language models.

The fine-tuning of the model over three chapters of a university-level pro-
gramming languages textbook has produced noteworthy results, as depicted
in the table below. During this process, various hyperparameters were care-
fully tuned to optimize performance. The model’s effectiveness was evaluated
through a battery of 25 single-choice questions, covering a wide array of topics
from the textbook. The table summarizes key hyperparameters used in the
fine-tuning process, including learning rate, batch size, and training steps,
alongside the results achieved in the test consisting of these 25 questions.
The results exhibit the model’s proficiency in comprehending and respond-
ing to questions related to programming languages, showcasing its ability to
provide accurate and contextually relevant answers within this specialized
domain.

As the questions used to test the models are the same as those used to test
the results of the inference section, the results of the models shown in the
table below are the only ones that give an accuracy equal to or better than
the LLaMA2 70B model (60% of accuracy). Other configurations have been
tested but result in a poor performing model.

57

Learning Rate | Batch Size | Microbatch Size | Training Steps | Test Results (%)
0.001 16 2 2000 17/25=68%
0.001 32 2 1000 16/25=64%
0.001 32 4 500 16/25=64%
0.001 32 4 1000 16/25=64%
0.001 64 4 2000 16/25=64%
0.001 128 4 500 15/25=60%
0.0001 16 2 1000 15/25=60%
0.0001 16 4 100 15/25=60%
0.0001 16 4 500 15/25=60%
0.0001 16 4 2000 16/25=64%
0.0001 32 2 500 16/25=64%
0.0001 32 4 100 15/25=60%
0.0001 32 4 200 15/25=60%
0.0001 32 4 2000 18/25=72%
0.0001 32 4 5000 15/25=60%
0.0001 64 2 1000 15/25=60%
0.0001 64 4 100 15/25=60%
0.0001 64 4 200 15/25=60%
0.0001 64 4 1000 16/25=64%
0.0001 64 4 2000 16/25=64%
0.0001 128 2 500 15/25=60%
0.0001 128 2 1000 15/25=60%
0.0001 128 2 2000 16/25=64%
0.0001 128 4 100 15/25=60%
0.0001 128 4 1000 16/25=64%
0.0001 128 4 2000 15/25=60%

Table 3.3: Fine-tuning - results

These results (Tab. 3.3) demonstrate the model’s remarkable adaptability
to domain-specific knowledge and its potential to assist students and profes-
sionals in mastering programming languages concepts with a high degree of

accuracy.

38

Conclusions and Future Works

In conclusion, this study has focused on the utilization of LaTeX-formatted
textbook data for fine-tuning Large Language Models (LLMs) and under-
scored the critical importance of domain-specific data preprocessing when
dealing with specialized content like textbooks. The research has demon-
strated the adaptability of fine-tuned LLMs in addressing single-choice ques-
tions, a task for which pretrained LLMs exhibit suboptimal performance.
Furthermore, the study has highlighted the contrasting resource consump-
tion between a less computationally intensive fine-tuned small LLM (7 billion
parameters) and a resource-intensive pretrained large LLM (70 billion param-
eters). These findings provide valuable insights for practitioners seeking to
optimize model selection and resource allocation in real-world applications,
contributing to the ongoing advancement of natural language processing so-
lutions across diverse domains.

In addition to the findings presented in this study, there are several promising
directions for future research:

e Multimodal Integration: Investigate the incorporation of visual ele-
ments, such as images and diagrams from textbooks, into the fine-
tuning process. This could enable LLMs to better comprehend and gen-
erate text in conjunction with visual information, enhancing their per-
formance on tasks involving multimodal content understanding. An-
other interesting point can be to extract informations from video and
audio recordings of university courses lessons.

e Different fine-tuning techniques: trying different fine-tuning techniques
can help to explore how these LLMs can learn and what is the best
technique to use for each individual model and domain.

e Ethical and Bias Considerations: Investigate and address potential bi-
ases in the fine-tuned LLMSs, especially when dealing with educational
content. Develop methods for mitigating biases and ensuring fair and
inclusive responses to user queries.

29

e User-Centric Evaluation: Conduct user studies and evaluations to as-
sess the real-world utility of fine-tuned LLMs in educational settings.
Gather feedback from students, teachers, and educational professionals
to refine the model’s design and capabilities.

e Prompt-Engineering: Prompt engineering is the art and science of
crafting precise and effective instructions or queries to elicit desired
responses from artificial intelligence models, such as language models
and chatbots. It involves formulating prompts that are clear, contex-
tually relevant, and tailored to the task at hand. Effective prompt
engineering requires a deep understanding of the model’s capabilities,
limitations, and biases, as well as the ability to fine-tune prompts to
achieve specific goals. Whether it’s generating creative content, con-
ducting research, or solving complex problems, skilled prompt engineers
play a crucial role in harnessing the potential of Al to deliver meaning-
ful and accurate results. In the rapidly evolving field of Al, mastering
prompt engineering is essential for optimizing the interaction between
humans and machines, enabling Al systems to assist, augment, and
enhance various aspects of our lives.

By pursuing these avenues of research, we can continue to advance the capa-
bilities of fine-tuned LLMs in educational contexts and address the evolving
needs of learners and educators in an increasingly digital and data-driven
educational landscape.

60

Bibliography

Henner Gimpel et al. “Unlocking the power of generative Al models
and systems such as GPT-4 and ChatGPT for higher education”. In:
(2023).

Jackson Stokes. A guide to language model sampling in AllenNLP.
https : //blog . allenai . org/a- guide - to - language -~ model -
sampling-in-allennlp-3b1239274bc3.

Hoo-Chang Shin, Le Lu, and Ronald M Summers. “Natural language
processing for large-scale medical image analysis using deep learning”.
In: Deep learning for medical image analysis (2017), pp. 405-421.

ChatGPT. https://chat.openai.com.

Ashish Vaswani et al. “Attention is all you need”. In: Advances in
neural information processing systems 30 (2017).

Wayne Xin Zhao et al. “A survey of large language models”. In: arXiv
preprint arXiv:2303.18223 (2023).

GPT-4 API https://openai.com/blog/gpt-4-api-general -
availability.
OpenAl https://openai.com.

Mingyu Zong and Bhaskar Krishnamachari. “A survey on GPT-3”. In:
arXiv preprint arXiv:2212.00857 (2022).

Jared Kaplan et al. “Scaling laws for neural language models”. In: arXiv
preprint arXiv:2001.08361 (2020).

Long Ouyang et al. “Training language models to follow instructions
with human feedback”. In: Advances in Neural Information Processing
Systems 35 (2022), pp. 27730-27744.

Henry Lai. What Are the Data-Centric AI Concepts behind GPT Mod-
els? https : //towardsdatascience . com/ what - are - the - data -
centric-ai-concepts-behind-gpt-models-a590071bb727.

61

20]
21)
22)
23]
24]
25)
26]

[27]

Alec Radford et al. “Language models are unsupervised multitask learn-
ers”. In: OpenAlI blog 1.8 (2019), p. 9.

Colin Raffel et al. “Exploring the limits of transfer learning with a
unified text-to-text transformer”. In: The Journal of Machine Learning
Research 21.1 (2020), pp. 5485-5551.

Mike Lewis et al. “Bart: Denoising sequence-to-sequence pre-training
for natural language generation, translation, and comprehension”. In:
arXiv preprint arXiv:1910.13461 (2019).

Mitchell Marcus, Beatrice Santorini, and Mary Ann Marcinkiewicz.
“Building a large annotated corpus of English: The Penn Treebank”.
In: (1993).

Stephen Merity et al. “Pointer sentinel mixture models”. In: arXiv
preprint arXiv:1609.07843 (2016).

Leo Gao et al. “The pile: An 800gb dataset of diverse text for language
modeling”. In: arXiv preprint arXiv:2101.00027 (2020).

Kishore Papineni et al. “Bleu: a method for automatic evaluation of
machine translation”. In: Proceedings of the 40th annual meeting of the
Association for Computational Linguistics. 2002, pp. 311-318.

Chin-Yew Lin. “Rouge: A package for automatic evaluation of sum-
maries”. In: Text summarization branches out. 2004, pp. 74-81.

Dan Hendrycks et al. “Measuring coding challenge competence with
apps”. In: arXiv preprint arXiv:2105.09938 (2021).

Mark Chen et al. “Evaluating large language models trained on code”.
In: arXiv preprint arXiv:2107.03374 (2021).

Jacob Austin et al. “Program synthesis with large language models”.
In: arXiv preprint arXiv:2108.07732 (2021).

Dan Hendrycks et al. “Measuring massive multitask language under-
standing”. In: arXiv preprint arXiv:2009.03300 (2020).

Mirac Suzgun et al. “Challenging big-bench tasks and whether chain-of-
thought can solve them”. In: arXiv preprint arXiv:2210.09261 (2022).

Percy Liang et al. “Holistic evaluation of language models”. In: arXiv
preprint arXiv:2211.09110 (2022).

Ramon Dijkstra et al. Reading Comprehension Quiz Generation using
Generative Pre-trained Transformers. 2022.

62

[29]

[30]

[31]

[36]

[37]

[38]

[39]

[40]

Tareq Rasul et al. “The role of ChatGPT in higher education: Bene-
fits, challenges, and future research directions”. In: Journal of Applied
Learning and Teaching 6.1 (2023).

Joseph Weizenbaum. “ELIZA — a computer program for the study of
natural language communication between man and machine”. In: Com-

munications of the ACM 9.1 (1966), pp. 36-45.

Donald L Bitzer et al. “The Plato System and Science Education.” In:
(1970).

Jaeho Jeon. “Exploring Al chatbot affordances in the EFL classroom:
Young learners’ experiences and perspectives”. In: Computer Assisted
Language Learning (2021), pp. 1-26.

Serge Bibauw et al. “Dialogue systems for language learning: A meta-
analysis”. In: Language Learning & Technology 26.1 (2022).

Jaeho Jeon and Seongyong Lee. “Large language models in education:
A focus on the complementary relationship between human teachers
and ChatGPT”. In: Education and Information Technologies (2023),
pp. 1-20.

Enkelejda Kasneci et al. “ChatGPT for good? On opportunities and
challenges of large language models for education”. In: Learning and
Individual Differences 103 (2023), p. 102274.

Jirapond Muangprathub, Veera Boonjing, and Kosin Chamnongthai.
“Learning recommendation with formal concept analysis for intelligent
tutoring system”. In: Heliyon 6.10 (2020).

Pablo Arnau-Gonzalez et al. “Towards automatic tutoring of Math
Word Problems in Intelligent Tutoring Systems”. In: IEEE Access (2023).

Erik Nijkamp et al. “Codegen: An open large language model for code
with multi-turn program synthesis”. In: arXiv preprint arXw:2203.13474
(2022).

Md Doulotuzzaman Xames and Jannatul Shefa. “ChatGPT for re-
search and publication: Opportunities and challenges”. In: Awvailable
at SSRN 4381803 (2023).

Fernando Antonio Flores Limo et al. “Personalized tutoring: ChatGPT
as a virtual tutor for personalized learning experiences”. In: Social
Space 23.1 (2023), pp. 293-312.

Rehan Ahmed Khan et al. “ChatGPT-Reshaping medical education
and clinical management”. In: Pakistan Journal of Medical Sciences
39.2 (2023), p. 605.

63

[41]

[42]

[43]

=
A

=
=)

[47]

[48]

Walid Hariri. “Unlocking the Potential of ChatGPT: A Comprehen-
sive Exploration of its Applications, Advantages, Limitations, and Fu-

ture Directions in Natural Language Processing”. In: arXiv preprint
arXiv:2304.02017 (2023).

Daniel M Ziegler et al. “Fine-tuning language models from human pref-
erences”. In: arXiv preprint arXiv:1909.08593 (2019).

Nisan Stiennon et al. “Learning to summarize with human feedback”.
In: Advances in Neural Information Processing Systems 33 (2020),
pp. 3008-3021.

LLaMA2 chatbot. https://1lama2.ai.
lit-gpt. https://github.com/Lightning-AI/lit-gpt.

Edward J Hu et al. “Lora: Low-rank adaptation of large language mod-
els”. In: arXiv preprint arXiv:2106.09685 (2021).

Renrui Zhang et al. “Llama-adapter: Efficient fine-tuning of language
models with zero-init attention”. In: arXiv preprint arXiw:2303.16199
(2023).

Hugo Touvron et al. “Llama 2: Open foundation and fine-tuned chat
models”. In: arXiv preprint arXiv:2307.09288 (2023).

64

Ringraziamenti

Un sentito ringraziamento va al mio relatore Saverio Giallorenzo e al mio
correlatore Maurizio Gabbrielli che mi hanno seguito, con disponibilita e
gentilezza, in ogni passo della realizzazione dell’elaborato, fin dalla scelta
dell’argomento, facendomi vedere la ricerca come un punto di svolta ma anche
di partenza per la mia futura carriera.

Vorrei anche ringraziare i due professori Cosimo Laneve e Giuseppe Lisanti
e la dottoressa Adele Veschetti con cui ho lavorato durante questo ultimo
anno. Grazie a loro ho avuto l'occasione di accrescere le mie competenze
comunicative in un ambiente inclusivo e collaborativo che ha reso il mio
lavoro piacevole e costruttivo.

Voglio fare un grosso ringraziamento anche ai miei fantastici compagni di
universita: Filippo, Nicold, Isabella e Alfonso. Abbiamo condiviso risate,
ansie da esami e una quantita incredibile di caffé durante questi due anni.
La vostra compagnia e il nostro sostegno reciproco hanno reso il percorso
universitario molto piu sopportabile e divertente. Grazie per essere stati una
parte importante della mia esperienza accademica e per aver reso tutto piu
significativo.

Non per ultimo, un grazie speciale alle mie amiche di sempre, Francesca e
Martina, che hanno alleggerito i momenti pit pesanti e mi hanno spronata a
dare sempre il meglio.

